A JESUIT CHRISTIAN MINORITY INSTITUTION
Sub: Arithmetic
Class: 7
Date: 05.05.20

STUDY MATERIAL: Rational Numbers

Important Formulae and Concepts

Introduction to Rational Numbers

Introduction: Rational Numbers

- A rational number is defined as a number that can be expressed in the form pq , where p and q are integers and $\mathrm{q} \neq 0$.
- In our daily lives, we use some quantities which are not whole numbers but can be expressed in the form of $\frac{p}{q}$. Hence we need rational numbers.

Equivalent Rational Numbers

- By multiplying or dividing the numerator and denominator of a rational number by a same non zero integer, we obtain another rational number equivalent to the given rational number.These are called equivalent fractions.
- $\frac{1}{3}=\frac{1}{3} \times \frac{2}{2}=\frac{2}{6}$
$\therefore 26$ and 13 are equivalent fractions.
- $\frac{15}{25}=\frac{15 \div 5}{25 \div 5}=\frac{3}{5}: \therefore \frac{15}{25}$ and $\frac{3}{5}$ are equivalent fractions.

Rational Numbers in Standard Form

- A rational number is said to be in the standard form if its denominator is a positive integer and the numerator and denominator have no common factor other than 1.
- Example: Reduce $-\frac{4}{16}$.

Here, the H.C.F. of 4 and 16 is 4.
$\Rightarrow-\frac{4}{16}=\frac{-\frac{4}{4}}{\frac{16}{4}} \Rightarrow-\frac{4}{16}=-\frac{1}{4}$ is the standard form of $-\frac{4}{16}$.
LCM

- The least common multiple (LCM) of two numbers is the smallest number $(\neq 0)$ that is a multiple of both.
- Example: LCM of 3 and 4 can be calculated as shown below:

Multiples of 3: $0,3,6,9, \mathbf{1 2}, 15$
Multiples of 4: $0,4,8, \mathbf{1 2}, 16$
LCM of 3 and 4 is 12 .

Rational Numbers Between 2 Rational Numbers

Rational Numbers between Two Rational Numbers

- There are unlimited number(infinite number) of rational numbers between any two rational numbers.
- Example: List some of the rational numbers between $-3 / 5$ and $-1 / 3$.

Solution: L.C.M. of 5 and 3 is 15 .
\Rightarrow The given equations can be written as $-9 / 15$ and $-5 / 15$.
$\Rightarrow-6 / 15,-7 / 15,-8 / 15$ are the rational numbers between $-3 / 5$ and $-1 / 3$.
Note : These are only few of the rational numbers between $-3 / 5$ and $-1 / 3$. There are infinte number of rational numbers between them. Following the same procedure, many more rational numbers can be inserted between them.

Properties of Rational Numbers

Properties of Rational Numbers

- Closure Property

Sum, difference and product of two rationals is again a rational number. So, Rational numbers are closed under addition, subtraction, multiplication but NOT under division.

- Commutativity Property

For any two rational numbers a and $b a * b=b * a$.

- Rational numbers are commutative under addition and
multiplication but NOT under subtraction and division.
Example: $\frac{1}{7}+\frac{3}{7}=\frac{4}{7}$ and $\frac{3}{7}+\frac{1}{7}=\frac{4}{7}$
$\frac{2}{3} \times \frac{5}{6}=\frac{10}{18}=\frac{5}{9}$ and $\frac{5}{6} \times \frac{2}{3}=\frac{5}{9}$
$\frac{1}{2}-\frac{3}{4}=-\frac{1}{4}$ but $\frac{3}{4}-\frac{1}{2}=\frac{1}{4}$
$\frac{3}{7} \div \frac{5}{2}=\frac{6}{35}$ but $\frac{5}{2} \div \frac{3}{7}=\frac{35}{6}$
- Associative Property

For any three rational numbers a, b and $c,(a * b) * c=a *(b * c)$.

- Addition and multiplication are associative for rational numbers, but subtraction and division are NOT associative for rational numbers.

Example: $\left(\frac{1}{5}+\frac{2}{7}\right)+\frac{1}{3}=\frac{86}{105}$ and $\frac{1}{5}+\left(\frac{2}{7}+\frac{1}{3}\right)=\frac{86}{105}$

$$
\begin{aligned}
& \left(\frac{3}{8} \times \frac{1}{9}\right) \times \frac{5}{7}=\frac{15}{504} \text { and } \frac{3}{8} \times\left(\frac{1}{9} \times \frac{5}{7}\right)=\frac{15}{504} \\
& \left(\frac{4}{9}-\frac{3}{2}\right)-\frac{1}{3}=\frac{93}{57} \text { but } \frac{4}{9}-\left(\frac{3}{2}-\frac{1}{3}\right)=\frac{39}{54} \\
& \left(\frac{3}{5} \div \frac{2}{5}\right) \div \frac{2}{5}=\frac{15}{4} \text { but } \frac{3}{5} \div\left(\frac{2}{5} \div \frac{2}{5}\right)=\frac{3}{5}
\end{aligned}
$$

Addition of Rational Numbers

- Case 1: Adding rational numbers with same denominators:

$$
\begin{aligned}
& \text { Example : } \frac{19}{5}+\frac{-7}{5} \\
& =\left(\frac{19-7}{5}\right)=\frac{12}{5}
\end{aligned}
$$

- Case 2: Adding rational numbers with different denominators:

> Example $: \frac{-3}{7}+\frac{2}{3}$
> LCM of 7 and 3 is 21
> So, $\frac{-3}{7}=\frac{-9}{21}$ and $\frac{2}{3}=\frac{14}{21}$
> $\Rightarrow \frac{-9}{21}+\frac{14}{21}=\left(\frac{-9+14}{21}\right)=\frac{5}{21}$
$<$

Subtraction of Rational Numbers

- To subtract two rational numbers, add the additive inverse of the rational number that is being subtracted, to the other rational number.
- Example: Subtract $\frac{2}{5}$ from $\frac{7}{9}$.
$\frac{7}{9}+$ Additive Inverse of $\left(\frac{2}{5}\right)$
$=\frac{7}{9}+\left(\frac{-2}{5}\right)$
$=\left(\frac{35-18}{45}\right) \quad\{\because$ LCM of 9 and 5 is 45$\}$

$$
=\frac{17}{45}
$$

Multiplication and Division of Rational Numbers

Multiplication of Rational Numbers

Multiplication of Rational Numbers

- Case 1 : To multiply a rational number by a positive integer, multiply the numerator by that integer, keeping the denominator unchanged.

$$
\frac{-3}{5} \times(7)=\frac{-3 \times 7}{5}=\frac{-21}{5}
$$

- Case 2: Steps to multiply one rational number by the other rational number:
Step 1: Multiply the numerators of the two rational numbers.
Step 2: Multiply the denominators of the two rational numbers.
Step 3: Write the product as
$\frac{\text { Product of Numerators }}{\text { Product of Denominators }}$

$$
=\left(\frac{-5}{7}\right) \times\left(\frac{-9}{8}\right)=\frac{-5 \times(-9)}{7 \times 8}=\frac{45}{56}
$$

Division of rational numbers

- To divide one rational number by the other rational numbers we multiply the rational number by the reciprocal of the other.

$$
\begin{aligned}
\text { Example: } & \frac{-2}{3} \div \frac{1}{7} \\
& =\frac{-2}{3} \times \text { Reciprocal of } \frac{1}{7} \\
& =\frac{-2}{3} \times 7 \quad\left\{\because \text { Reciprocal of } \frac{1}{7}=7\right\} \\
& =\frac{-14}{3}
\end{aligned}
$$

Negatives and Reciprocals
Negatives and Reciprocals

- Rational numbers are classified as positive and negative rational numbers.
(i) When both the numerator and denominator of a rational number are positive integers or negative integers, then it is a positive rational number.

Example: $\frac{3}{5}$ is a positive rational number. $\frac{-3}{-5}=\frac{3}{5}$ is also a positive rational number.
(ii) When either numerator or denominator of a rational number is a negative integer, it is a negative rational number. Example: $\frac{-3}{5}=-\frac{3}{5}$ is a negative rational number. $\frac{3}{-5}=-\frac{3}{5}$ is Iso a negative rational number.

- If the product of two rational numbers is 1 then they are called reciprocals of each other.
Example : $\frac{2}{3}$ is reciprocal of $\frac{3}{2}$, since $\frac{2}{3} \times \frac{3}{2}=1$

Note : The product of a rational number with its reciprocal is always 1 .

Additive Inverse of a Rational Number

- Additive Inverse of a rational number $\frac{p}{q}$ is the number that, when added to $\frac{p}{q}$, yields zero.
Example: Additive Inverse of a rational number $\frac{3}{5}$ is $\frac{-3}{5}$ and addtive inverse of $\frac{-3}{5}$ is $\frac{3}{5}$.
Since $\frac{3}{5}+\frac{-3}{5}=0$

Representing on a Number Line

Rational Numbers on a Number Line

- In order to represent a given rational number $\frac{a}{n}$, where a and ; are integers, on the number line :

Step 1: Divide the distance between two consecutive integers into n parts.
For example : If we are given a rational number $\frac{3}{4}$, we divide th space between 0 and 1,1 and 2 etc. into four parts
Step 2: Label the rational numbers till the range includes the number you need to mark

- The following figure shows how fractions $\frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ are represented on a number line.
- Divide the portion from 0 to 1 on the number line into four parts.
Then each part represents $\frac{1}{4}^{\text {th }}$ portion of the whole.

Comparison of Rational Numbers

- Case 1: To compare two negative rational numbers, ignore their negative signs and reverse the order.
Example: Which is greater: $\frac{-3}{8}$ or $\frac{-2}{7}$?
Compare $\frac{3}{8}$ and $\frac{2}{7}: \frac{3}{8}>\frac{2}{7}$
$\therefore \frac{-3}{8}<\frac{-2}{7}$
- Case 2: To compare a negative and a positive rational number, we consider that a negative rational number is to the left of zero whereas a positive rational number is to the right of zero on a number line. So, a negative rational number will always be less than a positive rational number.
Example: (i) $\frac{-3}{11}<\frac{2}{5}$
(ii) $\frac{-3}{8}<\frac{-2}{7}$

Solved Numericals

Multiple Choice Questions (MCQs)

Question 1:

A rational number is defined as a number that can be expressed in the form p / q, where p and q are integers and
(a) $\mathrm{q}=0$
(b) $\mathrm{q}=1$
(c) $q \neq 1$
(d) $q \neq 0$

Solution :
(d) By definition, a number that can be expressed in the form of p / q, where p and q are integers and $\mathrm{q} \neq 0$, is called a rational number.

Question 2:

Which of the following rational numbers is positive?
(a) $\frac{-8}{7}$
(b) $\frac{19}{-13}$
(c) $\frac{-3}{-4}$
(d) $\frac{-21}{13}$

Solution :

(c) We know that, when numerator and denominator of a rational number, both are negative, it is a positive rational number.
Hence, among the given rational numbers $\left(\frac{-3}{-4}\right)$ is positive.

Question 3:

Which of the following rational numbers is negative?
(a) $-\left(\frac{-3}{7}\right)$
(b) $\frac{-5}{-8}$
(c) $\frac{9}{8}$
(d) $\frac{3}{-7}$

Solution :

(d)
(a) $-\left(\frac{-3}{7}\right)=\frac{3}{7}$
(b) $\frac{-5}{-8}=\frac{5}{8}$
(c) $\frac{9}{8}=\frac{9}{8}$
(d) $\frac{3}{-7}=\frac{-3}{7}$

Question 4:

In the standard form of a rational number, the common factor of numerator and denominator is always
(a) 0
(b) 1
c) -2
(d) 2

Solution :

(b) By definition, in the standard form of a rational number, the common factor of numerator and denominator is always1
Note: Common factor means, a number which divides both the given two numbers.

Question 5:

Which of the following rational numbers is equal to its reciprocal?
(a) 1
(b) 2
c) $1 / 2$
(d) 0

Solution :

(a)

(a) Reciprocal of $1=\frac{1}{1}=1$
(b) Reciprocal of $2=\frac{1}{2}$
(c) Reciprocal of $\frac{1}{2}=\frac{1}{\frac{1}{2}}=2$
(d) Reciprocal of $0=\frac{1}{0}$

Note 1 is the only number, which is equal to its reciprocal.

Question 6:

The reciprocal of $1 / 2$ is
(a) 3
(b) 2
c) -1
(d) 0

Solution :

(b) Reciprocal of ${ }^{\frac{1}{2}}=\frac{1}{\frac{1}{2}}=2$

Question 7:

The standard form of $\frac{-48}{60}$ is
(a) $\frac{48}{60}$
(b) $\frac{-60}{48}$
(c) $\frac{-4}{5}$
(d) $\frac{-4}{-5}$

Solution :

(c) Given rational number is $\frac{-48}{60}$.

For standard/simplest form, divide numerator and denominator by their HCF

$$
\text { i.e. } \quad \frac{-48+12}{60+12}=\frac{-4}{5} \quad[\because H C F \text { of } 48 \text { and } 60=12]
$$

Hence, the standard form of $\frac{-48}{60}$ is $\frac{-4}{5}$.

Question 8:

Which of the following is equivalent to $4 / 5$?
(a) $\frac{5}{4}$
(b) $\frac{16}{25}$
(c) $\frac{16}{20}$
(d) $\frac{15}{25}$

Solution :

(c) Given rational number is $\frac{4}{5}$.

So, equivalent rational number $=\frac{4 \times 4}{5 \times 4}$

$$
=\frac{16}{20} \quad \text { [multiplying numerator and denominator by 4] }
$$

Note: If the numerator and denominator of a rational number is multiplied/divided by a nonzero integer, then the result we get, is equivalent rational number.

Question 9:

How many rational numbers are there between two rational numbers?
(a) 1
(b) 0
(c) unlimited
(d) 100

Solution :

(c) There are unlimited numbers between two rational numbers.

Question 10:

In the standard form of a rational number, the denominator is always a
(a) 0
(b) negative integer
(c) positive integer
(d) 1

Solution :

(c) By definition, a rational number is said to be in the standard form, if its denominator is a positive integer.

Question 11:

To reduce a rational number to its standard form, we divide its numerator and denominator by their
(a) LCM
(b) HCF
(c) product
(d) multiple

Solution :

(b) To reduce a rational number to its standard form, we divide its numerator and denominator by their HCF.

Question 12:

Which is greater number in the following?
(a) $-\frac{1}{2}$
(b) 0
(c) ${ }^{\frac{1}{2}}$
(d) -2

Solution :

(c) Obviously, $\frac{1}{2}$ is greater, since this is the only number which is on the rightmost side of the number line among others.

Fill in the Blanks

In questions 13 to 46 , fill in the blanks to make the statements true.

Question 13:

$\frac{-3}{8}$ is a rational number

Solution :

The given rational number $\frac{-3}{8}$ is a negative number, because its numerator is negative integer. Hence, $\frac{-3}{8}$ is a negative rational number.

Question 14:

is a \qquad rational number.

Solution :

The given rational number 1 is positive number, because its numerator and denominator are positive integer.
Hence, 1 is a positive rational number.

Question 15:

The standard form of $\frac{-8}{36}$ is \qquad -

Solution :

Given rational number is $\frac{-8}{-36}$.

$$
\begin{aligned}
& \text { For standard/simplest form, } \frac{-8+4}{-36+4}=\frac{-2}{-9}=\frac{2}{9} \\
& \text { Hence, the standard form of } \frac{-8}{-36} \text { is } \frac{2}{9}
\end{aligned}
$$

Question 16:

The standard form of $\frac{18}{-24}$ is \qquad .

Solution :

Given rational number is $\frac{18}{-24}$.
For standard/simplest form, $\frac{18+6}{-24+6}=\frac{3}{-4}$
$[\because$ HCF of 18 and $24=6]$

Hence, the standard form of $\frac{18}{-24}$ is $\frac{-3}{4}$.

Question 17:

On a number line, $\frac{-1}{2}$ is to the \qquad of Zero(0).

Solution :

On a number line, $\frac{-1}{2}$ is to the left of zero (0).

Note All the negative numbers lie on the left side of zero on the number line

Question 18:

On a number line, $\frac{3}{4}$ is to the \qquad of Zero(0).

Solution :

On a number line, $\frac{3}{4}$ is to the right of Zero(0).

Note All the positive numbers lie on the right side of zero on the number line.

Question 19:

$\frac{-1}{2}$ is \qquad than $\frac{1}{5}$.
Solution :
Given rational numbers are $\frac{-1}{2}$ and $\frac{1}{5}$.
LCM of their denominators, i.e. 2 and $5=10$

$$
\begin{array}{ll}
\therefore & \frac{-1 \times 5}{2 \times 5}=\frac{-5}{10} \text { and } \frac{1 \times 2}{5 \times 2}=\frac{2}{10} \\
\because & 2>-5 \\
\text { So, } & \frac{1}{5}>\frac{-1}{2}
\end{array}
$$

Hence, $\frac{-1}{2}$ is smaller than $\frac{1}{5}$.

Question 20:

$\frac{-3}{5}$ is \qquad than 0 .

Solution :

Since, $\frac{-3}{5}$ lies on the left side of zero (0). On the number line, $\frac{-3}{5}$ is smaller than 0
i.e. $\frac{-3}{5}<0$.

Question 21:

$\frac{-16}{24}$ and $\frac{20}{-16}$ represent \qquad rational numbers.

Solution :

$$
\begin{array}{ll}
\text { Given numbers are } \frac{-16}{24}=\frac{-4}{6}=\frac{-2}{3} & \text { [lowest form] } \\
\text { and } & \frac{20}{-16}=\frac{-5}{4} \\
& \text { [lowest form] } \\
\because & \frac{-16}{24} \neq \frac{20}{-16}
\end{array}
$$

Hence, $\frac{-16}{24}$ and $\frac{20}{-16}$ represent different rational numbers.

Question 22:

$\frac{-27}{45}$ and $\frac{-3}{5}$ represent \qquad rational numbers.

Solution :

Given numbers are $\frac{-27}{45}=\frac{-9}{15}=\frac{-3}{5}$
and $\quad \frac{-3}{5}$
[already lowest form]
Hence, $\frac{-27}{45}$ and $\frac{-3}{5}$ represent same rational numbers.

Question 23:

Additive inverse of $\frac{2}{3}$ is \qquad .

Solution :

Since, additive inverse is the negative of a number.
Hence, additive inverse of $\frac{2}{3}$ is $\frac{-2}{3}$.
Note Additive inverse is a number, which when added to a given number, we get result as zero.

Question 24: $\frac{-3}{5}+\frac{2}{5}=$ \qquad .

Solution :

Given, $\frac{-3}{5}+\frac{2}{5}=\frac{-3+2}{5}$
[taking LCM]
$=\frac{-1}{5}$
Hence, $\frac{-3}{5}+\frac{2}{5}=\frac{-1}{5}$.

Question 25:
$\frac{-5}{6}+\frac{-1}{6}=$ \qquad .

Solution :

$$
\text { Given, } \begin{aligned}
\frac{-5}{6}+\frac{-1}{6} & =\frac{-5}{6}-\frac{1}{6}=\frac{-5-1}{6} \\
& =\frac{-6}{6} \\
& =-1
\end{aligned}
$$

[taking LCM]

Hence, $\frac{-5}{6}+\frac{-1}{6}=-\mathbf{1}$.

Question 26:
$\frac{3}{4} \times\left(\frac{-2}{3}\right)=$ \qquad .

Solution :

Given, $\frac{3}{4} \times\left(\frac{-2}{3}\right)$
Product of rational numbers $=\frac{\text { Product of numerators }}{\text { Product of denominators }}=\frac{3 \times(-2)}{4 \times 3}=\frac{-6}{12}$

$$
\begin{aligned}
& =\frac{-6+6}{12+6} \quad \text { [dividing numerator and denominator by } 6 \text {] } \\
& =\frac{-1}{2}
\end{aligned}
$$

Question 27:
$\frac{-5}{3} \times\left(\frac{-3}{5}\right)=$ \qquad _.
Solution :
Given, $\frac{-5}{3} \times\left(\frac{-3}{5}\right)$
\because Product of rational numbers $=\frac{\text { Product of numerators }}{\text { Product of denominators }}=\frac{(-5) \times(-3)}{3 \times 5}=\frac{15}{15}=1$
Hence, $\frac{-5}{3} \times\left(\frac{-3}{5}\right)=1$.

Question 28:

Given, $\frac{-6}{7}=\overline{42}$
Solution :
Let given expression is written as $\frac{-6}{7}=\frac{x}{42}$
$\Rightarrow \quad x=\frac{42 \times(-6)}{7}=6 \times(-6) \quad \quad$ [by cross-multiplication]
$\Rightarrow \quad x=-36$
Hence, $\frac{-6}{7}=\frac{-36}{42}$.

Question 29:

$\frac{1}{2}=\frac{6}{-}$

Solution :

Let $\frac{1}{2}=\frac{6}{x}$
$\Rightarrow \quad x=12 \quad$ [by cross-multiplication]
Hence, $\frac{1}{2}=\frac{6}{12}$.

Question 30:

$$
\frac{-2}{9}-\frac{7}{9}=
$$

Solution :

Given, $\frac{-2}{9}-\frac{7}{9}=\frac{-2-7}{9}$
[taking LCM]

$$
=\frac{-9}{9}=-1
$$

Hence, $\frac{-2}{9}-\frac{7}{9}=-1$.

In questions 31 to 35 , fill in the boxes with the correct symbol ' $<^{\prime},{ }^{\prime}<$ ' or ${ }^{\prime}=$ '.
Question 31:
$\frac{7}{-8} \square \frac{8}{9}$

Solution :

Given rational numbers are $\frac{7}{-8}$ and $\frac{8}{9}$.
Since, $\frac{7}{-8}=\frac{-7}{8}$ is a negative rational number and $\frac{8}{9}$ is a positive rational number. Also,
every positive rational number is greater than negative rational number.
Hence, $\quad \frac{7}{-8}<\frac{8}{9}$.

Question 32:
$\frac{3}{7} \square \frac{-5}{6}$
Solution :
Given rational numbers are $\frac{3}{7}$ and $\frac{-5}{6}$.
Since, $\frac{-5}{6}$ is a negative rational number and $\frac{3}{7}$ is a positive rational number.
Also, every positive rational number is greater than negative rational number.
Hence, $\frac{3}{7}>\frac{-5}{6}$.

Question 33:

$\frac{5}{6} \square \frac{4}{8}$
Solution :
Given rational numbers are $\frac{5}{6}$ and $\frac{8}{4}$.
We convert the rational numbers with the same denominators.
$\therefore \quad \frac{5 \times 2}{6 \times 2}=\frac{10}{12}$ and $\frac{8 \times 3}{4 \times 3}=\frac{24}{12} \quad[\because$ LCM of 6 and $4=12]$
i.e. $\quad 24>10 \Rightarrow \frac{24}{12}>\frac{10}{12}$

Hence,

$$
\frac{5}{6}<\frac{8}{4}
$$

Question 34:

$\frac{-9}{7}<\frac{4}{-7}$

Solution :

Given rational numbers are $\frac{-9}{7}$ and $\frac{4}{-7}$. Since, both fractions have same denominator, the fraction which have greater numerator is greater. But in a negative number, the numerator which is smaller is the greater number.
Hence, $\frac{-9}{7}<\frac{4}{-7}$.

Question 35:

$\frac{8}{8} \square \frac{2}{2}$

Solution :

Given, $\frac{8}{8}=1$ and $\frac{2}{2}=1$
Hence, $\quad \frac{8}{8}=\frac{2}{2}$

Question 36:

The reciprocal of \qquad does not exist.
Solution :
The reciprocal of zero does not exist, as reciprocal of 0 is $1 / 0$, which is not defined.

Question 37:

The reciprocal of 1 is \qquad

Solution :

The reciprocal of $1=1 / 1$
Hence, the reciprocal of 1 is 1 .

Question 38:

$$
\frac{-3}{7} \div\left(\frac{-7}{3}\right)=
$$

\qquad

Solution :

\because Reciprocal of $\frac{-7}{3}$ is $\frac{3}{-7}$.
$\therefore \quad \frac{-3}{7} \times\left(\frac{3}{-7}\right)$
Product of rational numbers $=\frac{\text { Product of numerators }}{\text { Product of denominators }}=\frac{(-3 \times 3)}{7 \times(-7)}=\frac{-9}{-49}=\frac{9}{49}$
Hence, $\frac{-3}{7}+\left(\frac{-7}{3}\right)=\frac{9}{49}$.

Question 39:

$0 \div\left(\frac{-5}{6}\right)=$ \qquad

Solution :

Here, $0+\left(\frac{-5}{6}\right)=0$
Because, 0 divided by any number is zero.

Question 40:

$0 \times\left(\frac{-5}{6}\right)=$ \qquad

Solution :

Hence, $0 \times\left(\frac{-5}{6}\right)=0$
Because, zero multiplies by any number result is zero.

Question 41:

\qquad

$$
x^{\left(\frac{-2}{5}\right)}=1
$$

Solution :

$$
\begin{array}{rlrl}
\text { Let } & & x \times\left(\frac{-2}{5}\right) & =1 \\
\Rightarrow & & \frac{-2 x}{5} & =1 \\
\Rightarrow & & -2 x & =5 \\
\Rightarrow & x & =\frac{-5}{2} \\
& & & \\
& \text { Hence, } \frac{-5}{2} \times\left(\frac{-2}{5}\right) & =1
\end{array}
$$

Question 42:

The standard form of rational number -1 is \qquad .

Solution :

\therefore HCF of given rational number -1 is 1 .
For standard form $=-1+1=-1$
Hence, the standard form of rational number -1 is -1 .

Question 43:

If m is a common divisor of a and b , then $\frac{a}{b}=\frac{a+m}{-}$

Solution :

If m is a common divisor of a and b, then

$$
\frac{a}{b}=\frac{a+m}{b+m}
$$

Question 44:

If p and q are positive integers, then $\frac{p}{q}$ is a \qquad rational number and $\frac{p}{-q}$ is a \qquad rational number.

Solution :

if p and q are positive integers, then p / q is a positive rational number, because both numerator and denominator are positive and $\frac{p}{-q}$ is a negative rational number, because denominator is in negative

Question 45:

Two rational numbers are said to be equivalent or equal, if they have the same \qquad form.

Solution :

Two rational numbers are said to be equivalent or equal, if they have the same simplest form.

Question 46:

If p / q is a rational number, then q cannot be

Solution :

By definition, if B is a rational number, then q cannot be zero.

True/False

In questions 47 to 65, state whether the following statements are True or False.

Question 47:

Every natural number is a rational number, but every rational number need not be a natural number.

Solution :

True
e.g. $1 / 2$ is a rational number, but not a natural number.

Question 48:

Zero is a rational number.

Solution :

True
e.g. Zero can be written as $0=0 / 1$. We know that, a number of the form $\frac{p}{q}$, where p, q are integers and $\mathrm{q} \neq 0$ is a rational number. So, zero is a rational number.

Question 49:

Every integer is a rational number but every rational number need not be an integer.

Solution :

True
Integers.... $3,-2,-1,0,1,2,3, \ldots$
Rational numbers:
$1, \frac{-1}{2}, 0, \frac{1}{2} 1, \frac{3}{2}$,
Hence, every integer is rational number, but every rational number is not an integer.

Question 50:

Every negative integer is not a negative rational number.

Solution :

False

Because all the integers are rational numbers, whether it is negative/positive but vice-versa is not true.

Question 51:

If $\frac{p}{q}$ is a rational number and m is a non-zero integer, then

$\frac{p}{q}=\frac{p \times m}{q \times m}$

Solution :

True
e.g. Let $\mathrm{m}=1,2,3, \ldots$

When $m=1$, then $\quad \frac{p}{q}=\frac{p \times 1}{1 \times q}=\frac{p}{q}$
When $m=2$, then $\frac{p}{q}=\frac{p \times 2}{q \times 2}=\frac{p}{q}$
Hence,

$$
\frac{p}{q}=\frac{p \times m}{q \times m}
$$

Note: When both numerator and denominator of a rational number are multiplied/divide by a same non-zero number, then we get the same rational number

Question 52:

If $\frac{p}{q}$ is a rational number and m is a non-zero common divisor of p and q, then
$\frac{p}{q}=\frac{p \div m}{q \div m}$

Solution :

True

e.g. Let $m=1,2,3, \ldots$

When $m=1$, then $\frac{p}{q}=\frac{p+1}{q+1}=\frac{p}{1}+\frac{q}{1}=\frac{p}{1} \times \frac{1}{q}=\frac{p}{q}$
When $m=2$, then $\frac{p}{q}=\frac{p+2}{q+2}=\frac{p}{2}+\frac{q}{2}=\frac{p}{2} \times \frac{2}{q}=\frac{p}{q}$
Hence, $\quad \frac{p}{q}=\frac{p+m}{q+m}$

Question 53:

In a rational number, denominator always has to be a non-zero integer.

Solution :

Basic definition of the rational number is that, it is in the form of $\frac{p}{q}$, where $\mathrm{q} \neq 0$. It is because any number divided by zero is not defined.

Question 54:

If $\frac{p}{q}$ is a rational number and m is a non-zero integer, then $\frac{p \times m}{q \times m}$ is a rational number not equivalent to $\frac{p}{q}$.

Solution :

False

Let $m=1,2,3, \ldots$
When $m=1$, then $\frac{p \times m}{q \times m}=\frac{p \times 1}{q \times 1}=\frac{p}{q}$
when $m=2$, then $\frac{p \times m}{q \times m}=\frac{p \times 2}{q \times 2}=\frac{p}{q}$
For any non-zero value of $m, \frac{p \times m}{q \times m}$ is always equivalent to $\frac{p}{q}$.

Question 55:

Sum of two rational numbers is always a rational number.

Solution :

True
Sum of two rational numbers is always a rational number, it is true.
$\frac{1}{2}+\frac{2}{3}=\frac{3+4}{6}=\frac{7}{6}$

Question 56:

All decimal numbers are also rational numbers.

Solution

True
All decimal numbers are also rational numbers, it is true.
$0.6=\frac{6}{10}=\frac{3}{5}$

Question 57:

The quotient of two rationals is always a rational number.

Solution :

False

The quotient of two rationals is not always a rational number.
e.g. 1/0.

Question 58:

Every fraction is a rational number.

Solution :

True
Every fraction is a rational number but vice-versa is not true.

Question 59:

Two rationals with different numerators can never be equal.

Solution :

False

Let $\frac{2}{3}$ and $\frac{4}{6}$ be two rational numbers, then $\frac{4}{6}$ can be written as $\frac{2}{3}$ in its lowest form.
$\because \frac{4}{6}=\frac{4+2}{6+2}=\frac{4}{2} \div \frac{6}{2}=\frac{2}{3}$
Hence, two rational numbers with different numerators can be equal.

Question 60:

8 can be written as a rational number with any integer as denominator.

Solution :

8 can be written as a rational number with any integer as denominator, it is false because 8 can be written as a rational number with 1 as denominator i.e.8/1.

Question 61:

$\frac{4}{6}$ is equivalent to $\frac{2}{3}$

Solution :

True

$$
\text { Given, } \frac{4}{6}=\frac{4+2}{6+2}=\frac{2}{3}
$$

Question 62:

The rational number $\frac{-3}{4}$ lies to the right of zero on the number line.

Solution :

False

Because every negative rational number lies to the left of zero on the number line.

Question 63:

The rational number $\frac{-12}{15}$ and $\frac{-7}{17}$ are on the opposite sides of zero on the number line.

Solution :

Given rational numbers are $\frac{-12}{-15}$ i.e. $\frac{12}{15}$ and $\frac{-7}{17}$.
Hence, it is true, that rational numbers $\frac{12}{15}$ and $\frac{-7}{17}$ are on the opposite sides of zero on the number line as one is negative and one is positve.

Question 64:

Every rational number is a whole number.

Solution :

False
e.g. $\frac{-7}{8}$ is a rational number, but it is not a whole number, because whole numbers are $0,1,2 \ldots$.

Question 65:

Zero is the smallest rational number.

Solution :

False
Rational numbers can be negative and negative rational numbers are smaller than zero.

Question 66:
 Match the following:

Column I		Column II	
(i)	$\frac{a}{b}+\frac{a}{b}$	(a)	$\frac{-a}{b}$
(ii)	$\frac{a}{b}+\frac{c}{d}$	(b)	-1
(iii)	$\frac{a}{b}+(-1)$	(c)	1
(iv)	$\frac{a}{b}+\frac{-a}{b}$	(d)	$\frac{b c}{a d}$
(v)	$\frac{b}{a}+\left(\frac{d}{c}\right)$	(e)	$\frac{a d}{b c}$

Solution :

(i) \leftrightarrow (c)

Given, $\quad \frac{a}{b}+\frac{a}{b}=\frac{a}{b} \times \frac{b}{a}$
$\left[\because\right.$ Reciprocal of $\left.\frac{a}{b}=\frac{b}{a}\right]$

$$
=1
$$

(ii) \leftrightarrow (e)

Given

$$
\begin{aligned}
\frac{a}{b}+\frac{c}{d} & =\frac{a}{b} \times \frac{d}{c} \\
& =\frac{a d}{b c}
\end{aligned}
$$

$$
\left[\because \text { Reciprocal of } \frac{c}{d}=\frac{d}{c}\right]
$$

(iii) \leftrightarrow (a)

Given, $\quad \frac{a}{b}+(-1)=\frac{a}{b} \times(-1)$
$[\because$ Reciprocal of $-1=-1]$

$$
=\frac{-a}{b}
$$

(iv) \leftrightarrow (b)

Given, $\quad \frac{a}{b}+\frac{-a}{b}=\frac{a}{b} \times\left(\frac{-b}{a}\right)$ $\left[\because\right.$ Reciprocal of $\left.\frac{-a}{b}=\frac{-b}{a}\right]$

$$
=-1
$$

(v) \leftrightarrow (d)
Given,

$$
\begin{aligned}
\frac{b}{a}+\left(\frac{d}{c}\right) & =\frac{b}{a} \times \frac{c}{d} \\
& =\frac{b c}{a d}
\end{aligned}
$$

$$
\left[\because \text { Reciprocal of } \frac{d}{c}=\frac{c}{d}\right]
$$

Question 67:

Write each of the following rational numbers with positive denominators.
$\frac{5}{-8},+\frac{15}{28}-\frac{17}{13}$

Solution :

We can write, $\frac{5}{-8}=\frac{5 \times(-1)}{-8 \times(-1)}=\frac{-5}{8} \quad$ [multiplying numerators and denominators by (-1)]
$\frac{15}{-28}$ can be written as $=\frac{15 \times(-1)}{-28 \times(-1)}=\frac{-15}{28}$
and $\frac{-17}{-13}$ can be written as $=\frac{-17 \times(-1)}{-13 \times(-1)}=\frac{17}{13}$, as both negative signs are cancelled.

Question 68:

Express $\frac{3}{4}$ as a rational number with denominator:
(a) 36
(b) -80

Solution :

(a) To make the denominator 36 , we have to multiply numerator and denominator by 9 .

$$
\therefore \quad \frac{3 \times 9}{4 \times 9}=\frac{27}{36}
$$

(b) To make the denominator -80 , we have to multiply numerator and denominator by -20 .

$$
\therefore \quad \frac{3 \times(-20)}{4 \times(-20)}=\frac{-60}{-80}
$$

Question 69:

Reduce each of the following rational numbers in its lowest form
(i) $\frac{-60}{72}$
(ii) $\frac{91}{-364}$

Solution :

(i) $\frac{-60}{72}$ can be written as

$$
\begin{aligned}
& =\frac{-60+12}{72+12} \quad \text { [dividing numerator and denominator by HCF of } 60 \text { and } 72 \text { i.e. 12] } \\
& =\frac{-60 \times \frac{1}{12}}{72 \times \frac{1}{12}} \\
& =\frac{-5}{6}, \text { which is the lowest form. }
\end{aligned}
$$

(ii) $\frac{91}{-364}$ can be written as

$$
\begin{aligned}
& \left.=\frac{91+91}{-364 \div 91} \quad \text { [dividing numerator and denominator by HCF of } 91 \text { and } 364 \text { i.e., } 91\right] \\
& =\frac{91 \times \frac{1}{91}}{-364 \times \frac{1}{91}} \\
& =-\frac{1}{4} \text {, which is the lowest form. }
\end{aligned}
$$

Question 70:

Express each of the following rational numbers in its standard form
(i) $\frac{-12}{-30}$
(ii) $\frac{14}{-49}$
(iii) $\frac{-15}{35}$
(iv) $\frac{299}{-161}$

Solution :

(i) Given rational number is $\frac{-12}{-30}$.

$$
\text { For standard form of given rational number } \begin{aligned}
& =\frac{-12+6}{-30+6} \\
& =\frac{-2}{-5}=\frac{2}{5}
\end{aligned} \quad[\because \text { HCF of } 12 \text { and } 30=6]
$$

Hence, the standard form of $\frac{-12}{-30}$ is $\frac{2}{5}$.
(ii) Given rational number is $\frac{14}{-49}$.

For standard form of given rational number $=\frac{14 \div 7}{-49+7} \quad[\because$ HCF of 14 and $49=7]$

$$
=\frac{2}{-7}=\frac{-2}{7}
$$

Hence, the standard form of $\frac{14}{-49}$ is $\frac{-2}{7}$.
(iii) Given rational number is $\frac{-15}{35}$.
$\begin{aligned} \text { For standard form of given rational number } & =\frac{-15+5}{35+5} \quad[\because \text { HCF of } 15 \text { and } 35=5] \\ & =\frac{-3}{7}\end{aligned}$
Hence, the standard form of $\frac{-15}{35}$ is $\frac{-3}{7}$.
(iv) Given rational number is $\frac{299}{-161}$.

$$
\begin{aligned}
& \text { For standard form of given rational number }=\frac{299 \div 23}{-161 \div 23} \quad[\because \text { HCF of } 299 \text { and } 61=23] \\
& \begin{aligned}
& =\frac{13}{-7}=\frac{13+(-1)}{13+(-1)} \quad \text { [dividing by }(-1) \text { in both numerator and denominator] } \\
& =\frac{-13}{7}
\end{aligned}
\end{aligned}
$$

Hence, the standard form of $\frac{299}{-161}$ is $\frac{-13}{7}$.

Question 71:

Are the rational numbers $\frac{-8}{28}$ and $\frac{32}{-12}$ equivalent? Give reason.

Solution :

Given rational numbers are $\frac{-8}{28}$ and $\frac{32}{-112}$.
For standard form of $\frac{-8}{28}=\frac{-8+4}{28+4}=\frac{-2}{7}$
$[\because$ HCF of 8 and $28=4]$
and standard form of $\frac{32}{-112}=\frac{32+16}{-112+16}$
$[\because$ HCF of 32 and $112=16]$

$$
=\frac{2}{-7}=\frac{-2}{7}
$$

Yes
Since, the standard form of $\frac{-8}{28}$ and $\frac{32}{-112}$ are equal.
Hence, they are equivalent.

Question 72:

Arrange the rational numbers $\frac{-7}{10}, \frac{5}{-8}, \frac{2}{-3}, \frac{-1}{4}, \frac{-3}{5}$ in ascending order.

Solution :

Given rational numbers are $\frac{-7}{10}, \frac{5}{-8}, \frac{2}{-3}, \frac{-1}{4}, \frac{-3}{5}$.
To arrange in any order, we make denominators of all rational numbers as same.
\therefore LCM of $10,8,3,4$ and 5 is 120 .
So,

$$
\begin{aligned}
& \frac{-7 \times 12}{10 \times 12}, \frac{5 \times 15}{-8 \times 15}, \frac{2 \times 40}{-3 \times 40}, \frac{-1 \times 30}{4 \times 30}, \frac{-3 \times 24}{5 \times 24} \\
& =\frac{-84}{120}, \frac{75}{-120}, \frac{80}{-120}, \frac{-30}{120}, \frac{-72}{120} \\
& =\frac{-84}{120}, \frac{-75}{120}, \frac{-80}{120}, \frac{-30}{120}, \frac{-72}{120}
\end{aligned}
$$

Since, denominators are same, so ascending order of numerators are $-84,-80,-75,-72$, -30 .
Hence, $\frac{-84}{120}<\frac{-80}{120}<\frac{-75}{120}<\frac{-72}{120}<\frac{-30}{120}$
i.e. $\quad \frac{-7}{10}<\frac{2}{-3}<\frac{5}{-8}<\frac{-3}{5}<\frac{-1}{4}$

Question 73:

Represent the following rational numbers on a number line.
$\frac{3}{8}, \frac{-7}{3}, \frac{22}{-6}$

Solution :

Question 74:

If $\frac{-5}{7}=\frac{\times}{28}$ find the value of x.

Solution :

Given,

$$
\frac{-5}{7}=\frac{x}{28}
$$

```
\(\Rightarrow \quad 7 \times x=-5 \times 28 \quad\) [by cross-multiplication]
\(\Rightarrow \quad x=-\frac{5 \times 28}{7}=-5 \times 4\)
\(\Rightarrow \quad x=-20\)
Hence, the value of \(x\) is -20 .
```


Question 75:

Give three rational numbers equivalent to
(i) $\frac{-3}{4}$
(ii) $\frac{7}{11}$

Solution :

(i) Given rational number is $\frac{-3}{4}$.

So, the equivalent rational numbers are

$$
\frac{-3 \times 2}{4 \times 2}=\frac{-6}{8}, \frac{-3 \times 3}{4 \times 3}=\frac{-9}{12} \text { and } \frac{-3 \times 4}{4 \times 4}=\frac{-12}{16}
$$

Hence, three equivalent rational numbers are $\frac{-6}{8}, \frac{-9}{12}$ and $\frac{-12}{16}$.
(ii) Given rational number is $\frac{7}{11}$.

So, the equivalent rational numbers are

$$
\frac{7 \times 2}{11 \times 2}=\frac{14}{22}, \frac{7 \times 3}{11 \times 3}=\frac{21}{33} \text { and } \frac{7 \times 4}{11 \times 4}=\frac{28}{44}
$$

Hence, three equivalent rational numbers are $\frac{14}{22}, \frac{21}{23}$ and $\frac{28}{44}$.

Question 76:

Write the next three rational numbers to complete the pattern:

$$
\begin{aligned}
& \text { (i) } \frac{4}{-5}, \frac{8}{-10}, \frac{12}{-15}, \frac{16}{-20},-,-, \\
& \text { (ii) } \frac{-8}{7}, \frac{-16}{14}, \frac{-24}{21}, \frac{-32}{28},-,-,
\end{aligned}
$$

Solution :

(i) Given rational number is $\frac{4}{-5}$.

So, the next three equivalent rational numbers are

$$
\frac{4 \times 5}{-5 \times 5}=\frac{20}{-25}, \frac{4 \times 6}{-5 \times 6}=\frac{24}{-30} \text { and } \frac{4 \times 7}{-5 \times 7}=\frac{28}{-35}
$$

Hence, the next equivalent numbers are $\frac{20}{-25}, \frac{24}{-30}, \frac{28}{-35}$
(ii) Given rational number is $\frac{-8}{7}$.

So, the next three equivalent rational numbers are

$$
\frac{-8 \times 5}{7 \times 5}=\frac{-40}{35}, \frac{-8 \times 6}{7 \times 6}=\frac{-48}{42} \text { and } \frac{-8 \times 7}{7 \times 7}=\frac{-56}{49}
$$

Hence, three next equivalent numbers are $\frac{-40}{35}, \frac{-48}{42}, \frac{-56}{49}$.

Question 77:

List four rational numbers between $\frac{5}{7}$ and $\frac{7}{8}$.

Solution :

Given rational numbers are $\frac{5}{7}$ and $\frac{7}{8}$.
For making the same denominators: LCM of 7 and $8=56$.
i.e. $\quad \frac{5 \times 8}{7 \times 8}=\frac{40}{56}$ and $\frac{7 \times 7}{8 \times 7}=\frac{49}{56}$

So, the four rational numbers between $\frac{40}{56}$ and $\frac{49}{56}$ are

$$
\frac{42}{56}, \frac{44}{5}, \frac{46}{56}, \frac{48}{56}
$$

Question 78:

Find the sum of
(i) $\frac{8}{13}$ and $\frac{3}{11}$
(ii) $\frac{7}{3}$ and $\frac{-4}{3}$

Solution :

(i) Given, $\frac{8}{13}$ and $\frac{3}{11}$

Sum $=\frac{8}{13}+\frac{3}{11}=\frac{8 \times 11}{13 \times 11}+\frac{3 \times 13}{11 \times 13}=\frac{88}{143}+\frac{39}{143}$
$[\because$ LCM of 13 and $11=143$]

$$
\begin{aligned}
& =\frac{88+39}{143} \\
& =\frac{127}{143}
\end{aligned}
$$

Hence, the sum of $\frac{8}{13}$ and $\frac{3}{11}$ is $\frac{127}{143}$.
(ii) Given, $\frac{7}{3}$ and $\frac{-4}{3}$

$$
\begin{aligned}
\text { Sum } & =\frac{7}{3}+\left(-\frac{4}{3}\right) \\
& =\frac{7}{3}-\frac{4}{3} \\
& =\frac{7-4}{3}=\frac{3}{3} \\
& =1
\end{aligned}
$$

Hence, the sum of $\frac{7}{3}$ and $\frac{-4}{3}$ is 1 .

Question 79:

Solve:
(i) $\frac{29}{4}-\frac{30}{7}$
(ii) $\frac{5}{13}-\frac{-8}{26}$

Solution :
(i) Given, $\frac{29}{4}-\frac{30}{7}=\frac{29 \times 7}{4 \times 7}-\frac{30 \times 4}{7 \times 4}$
[\because LCM of 4 and 7 is 28 , so convert each of the given fractions to equivalent fractions with denominator 28]
$=\frac{203}{28}-\frac{120}{28}$
$=\frac{203-120}{28}=\frac{83}{28}$
(ii) Given, $\frac{5}{13}-\left(\frac{-8}{26}\right)=\frac{5}{13}+\frac{8}{26}=\frac{5 \times 2}{13 \times 2}+\frac{8 \times 1}{26 \times 1}$
$[\because$ LCM of 13 and 26 is 26 , so convert each of the given fractions to equivalent fractions with denominator 26]
$=\frac{10}{26}+\frac{8}{26}$
$=\frac{10+8}{26}=\frac{18}{26}$
$=\frac{18+2}{26+2}=\frac{9}{13} \quad$ [dividing numerator and denominator by 2]

Question 80:

Find the product of
(i) $\frac{-4}{5}$ and $\frac{-5}{12}$
(ii) $\frac{-22}{11}$ and $\frac{-21}{11}$

Solution :

(i) Given, $\frac{-4}{5}$ and $\frac{-5}{12}$
\therefore Product of rational numbers $=\frac{\text { Product of numerators }}{\text { Product of denominators }}$

$$
\begin{aligned}
& =\frac{(-4) \times(-5)}{5 \times 12}=\frac{20}{60} \\
& =\frac{20+20}{60+20} \text { [dividing numerator and denominator by 20] } \\
& =\frac{1}{3}
\end{aligned}
$$

(ii) Given, $\frac{-22}{11}$ and $\frac{-21}{11}$
\therefore Product of rational numbers $=\frac{\text { Product of numerators }}{\text { Product of denominators }}=\frac{(-22) \times(-21)}{11 \times 11}=\frac{462}{121}$

$$
\begin{aligned}
& =\frac{462+11}{121+11} \text { [dividing numerator and denominator by } 11 \text {] } \\
& =\frac{42}{11}
\end{aligned}
$$

Question 81:

Simplify:
(i) $\frac{13}{11} \times \frac{-14}{5}+\frac{13}{11} \times \frac{-7}{5}+\frac{-13}{11} \times \frac{34}{5}$
(ii) $\frac{6}{5} \times \frac{3}{7}-\frac{1}{5} \times \frac{3}{7}$

Solution :
(i) Given, $\frac{13}{11} \times \frac{-14}{5}+\frac{13}{11} \times \frac{-7}{5}+\frac{-13}{11} \times \frac{34}{5}$

$$
\begin{aligned}
& =\frac{13 \times(-14)}{11 \times 5}+\frac{13 \times(-7)}{11 \times 5}+\frac{(-13) \times 34}{11 \times 5} \\
& =\frac{-182}{55}+\frac{(-91)}{55}+\frac{(-442)}{55} \\
& =\frac{-182-91-442}{55} \\
& =\frac{-715}{55}=-13
\end{aligned}
$$

[taking LCM]
(ii) Given, $\frac{6}{5} \times \frac{3}{7}-\frac{1}{5} \times \frac{3}{7}$

$$
\begin{aligned}
& =\frac{6 \times 3}{5 \times 7}-\frac{1 \times 3}{5 \times 7}=\frac{18}{35}-\frac{3}{35} \\
& =\frac{18-3}{35}=\frac{15}{35}=\frac{15+5}{35+5} \quad \quad \text { [dividing numerator and denominator by 5] } \\
& =\frac{3}{7}
\end{aligned}
$$

Question 82:
Simplify:
(i) $\frac{3}{7} \div\left(\frac{21}{-55}\right)$
(ii) $1 \div\left(-\frac{1}{2}\right)$

Solution :

(i) Given, $\frac{3}{7}+\left(\frac{21}{-55}\right)$

The reciprocal of $\left(\frac{21}{-55}\right)$ is $\frac{-55}{21}$.
So, $\frac{3}{7} \div\left(\frac{21}{-55}\right)=\frac{3}{7} \times \frac{(-55)}{21}=\frac{(-55) \times 3}{7 \times 21}=\frac{-55}{49}$
(ii) Given, $1 \div\left(-\frac{1}{2}\right)$

The reciprocal of $\left(-\frac{1}{2}\right)$ is $\frac{2}{-1}$.
So, $1 \div\left(-\frac{1}{2}\right) \frac{1}{1} \times \frac{2}{-1}=\frac{1 \times 2}{1 \times(-1)}$

$$
=\frac{2}{-1}=-2
$$

Question 83:

Which is greater in the following?
(i) $\frac{3}{4}, \frac{7}{8}$
(ii) $-3 \frac{5}{7}, 3 \frac{1}{9}$

Solution :
(i) Given rational numbers are $\frac{3}{4}$ and $\frac{7}{8}$.

Here, $\frac{3}{4}=\frac{3 \times 2}{4 \times 2}=\frac{6}{8}$ and $\frac{7}{8}=\frac{7 \times 1}{8 \times 1}=\frac{7}{8} \quad[\because$ LCM of 4 and $8=8]$
$\because \quad 7>6 \quad$ [since, the denominators of both rational numbers are same]
So, $\quad \frac{7}{8}>\frac{3}{4}$
Hence, the greater number is $\frac{7}{8}$.
(ii) Given rational numbers are $-3 \frac{5}{7}$ and $3 \frac{1}{9}$.

Here, $-3 \frac{5}{7}=-\frac{[(3) \times 7+5]}{7}=\frac{-[(21)+5]}{7}=\frac{-26}{7}$
Also, $\quad 3 \frac{1}{9}=\frac{\{3 \times 9+1\}}{9}=\frac{\{27+1\}}{9}=\frac{28}{9}$
So, the rational numbers can be written as $\frac{-26}{7}$ and $\frac{28}{9}$.

$$
\frac{-26}{7}=\frac{-26 \times 9}{7 \times 9}=-\frac{234}{63} \text { and } \frac{28}{9}=\frac{28 \times 7}{9 \times 7}=\frac{196}{63}
$$

$$
[\because \text { LCM of } 7 \text { and } 9=63]
$$

$\therefore \quad 196>-234$ [since, the denominators of both rational numbers are same]
So, $\quad 3 \frac{1}{9}>-3 \frac{5}{7}$
Hence, the greater number is $3 \frac{1}{9}$.

Question 84:

Write a rational number in which the numerator is less than ' -7×11 ' and the denominator is greater than ' $12+4$ '.

Solution :

Let, $\quad-7 \times 11=p=-77$
and $\quad 12+4=q=16$
Rational number $=\frac{p}{q}=\frac{-77}{16}$
Hence, it has more than one answer like $\frac{-78}{17}, \frac{-79}{18}, \frac{-80}{19}$.

Question 85:

If $x=\frac{1}{10}$ and $y=\frac{-3}{8}$, then evaluate $x+y, x-y, x x y$ and $x \div y$.

Solution :

Given, $x=\frac{1}{10}$ and $y=\frac{-3}{8}$
Now, $\quad x+y=\frac{1}{10}+\frac{(-3)}{8}=\frac{1}{10}-\frac{3}{8}$

$$
\begin{aligned}
& =\frac{1 \times 4}{10 \times 4}-\frac{3 \times 5}{8 \times 5} \\
& =\frac{4}{40}-\frac{15}{40}=\frac{4-15}{40} \\
& =-\frac{11}{40}
\end{aligned}
$$

and

$$
\begin{aligned}
x-y & =\frac{1}{10}-\left(-\frac{3}{8}\right)=\frac{1}{10}+\frac{3}{8} \\
& =\frac{1 \times 4}{10 \times 4}+\frac{3 \times 5}{8 \times 5} \quad[\because \text { LCM of } 10 \text { and } 8=40] \\
& =\frac{4}{40}+\frac{15}{40}=\frac{4+15}{40} \\
& =\frac{19}{40}
\end{aligned}
$$

\therefore Product of rational numbers $=\frac{\text { Product of numerators }}{\text { Product of denominators }}$
$\Rightarrow \quad x \times y=\frac{1}{10} \times \frac{(-3)}{8}=\frac{1 \times(-3)}{10 \times 8}=\frac{-3}{80}$
and

$$
x+y=\frac{1}{10}+\left(\frac{-3}{8}\right)
$$

The reciprocal of $\left(\frac{-3}{8}\right)$ is $\frac{8}{-3}$.
So,

$$
x+y=\frac{1}{10} \times \frac{8}{-3}
$$

$$
\begin{aligned}
=\frac{1 \times 8}{10 \times-3} & =\frac{-8}{30}=\frac{-8+2}{30+2} \quad \text { [dividing numerator and denominator by } 2 \text {] } \\
& =\frac{-4}{15}
\end{aligned}
$$

Question 86:

Find the reciprocal of the following:
(i) $\left(\frac{1}{2} \times \frac{1}{4}\right)+\left(\frac{1}{2} \times 6\right)$
(ii) $\frac{20}{51} \times \frac{4}{91}$
(iii) $\frac{3}{13} \div \frac{-4}{65}$
(iv) $\left(-5 \times \frac{12}{15}\right)-\left(-3 \times \frac{2}{9}\right)$

Solution :
(i) Given, $\left(\frac{1}{2} \times \frac{1}{4}\right)+\left(\frac{1}{2} \times 6\right)$

$$
\begin{aligned}
& =\frac{1 \times 1}{2 \times 4}+\frac{1 \times 6}{2 \times 1}=\frac{1}{8}+\frac{6}{2} \quad\left[\because \text { product of rational numbers }=\frac{\text { prodcut of numerators }}{\text { prodcut of denominators }}\right] \\
& =\frac{1 \times 1}{8 \times 1}+\frac{6 \times 4}{2 \times 4} \\
& =\frac{1}{8}+\frac{24}{8}=\frac{1+24}{8} \\
& =\frac{25}{8}
\end{aligned}
$$

Hence, the reciprocal of $\frac{25}{8}$ is $\frac{8}{25}$.
(ii) Given, $\frac{20}{51} \times \frac{4}{91}$

$$
\begin{aligned}
& =\frac{20 \times 4}{51 \times 91} \quad\left[\because \text { product of rational numbers }=\frac{\text { product of numerators }}{\text { product of denominators }}\right] \\
& =\frac{80}{4641}
\end{aligned}
$$

Hence, the reciprocal of $\frac{80}{4641}$ is $\frac{4641}{80}$.
(iii) Given, $\frac{3}{13}+\frac{-4}{65}$

The reciprocal of $\frac{-4}{65}$ is $\frac{65}{-4}$.
$\therefore \frac{3}{13} \div \frac{-4}{65}=\frac{3}{13} \times \frac{65}{-4}=\frac{65 \times 3}{13 \times(-4)}=\frac{15}{-4}$
Hence, the reciprocal of $\frac{15}{-4}$ is $\frac{-4}{15}$.
(iv) Given, $\left(-5 \times \frac{12}{15}\right)-\left(-3 \times \frac{2}{9}\right)=\left(-\frac{12}{3}\right)-\left(-\frac{2}{3}\right)$

$$
=-\frac{12}{3}+\frac{2}{3}=\frac{-12+2}{3}=-\frac{10}{3}
$$

Hence, the reciprocal of $-\frac{10}{3}$ is $-\frac{3}{10}$.

Question 87:

Write each of the following numbers in the form p / q, where p and q are integers.
(a) six-eighths
(b) three and half
(c) opposite of 1
(d) one-fourth
(e) zero
(f) opposite of three-fifths

Solution :

(a) Six-eighths $=\frac{6}{8}$
(b) Three and half $=3 \frac{1}{2}=\frac{3 \times 2+1}{2}=\frac{7}{2}$
(c) Opposite of $1=\frac{1}{1}$
(d) One-fourth $=\frac{1}{4}$
(e) $0=\frac{0}{1}$
(f) Here, three-fifths $=\frac{3}{5}$
\therefore Opposite of three-fifths $=\frac{5}{3}$

Question 88:

In each of the following cases, write the rational number whose numerator and denominator are respectively as under:
(a) 5-39 and 54-6
(b) (-4) $\times 6$ and $8 \div 2$
(c) $35 \div(-7)$ and $35-18$
(d) $25+15$ and $81 \div 40$

Solution :

(a) Given,
Let numerator,

$$
5-39 \text { and } 54-6
$$

and denominator,

$$
\rho=5-39=-34
$$

Hence, rational number $=\frac{p}{q}=\frac{-34}{48}$
(b) Given,

Let numerator,

$$
(-4) \times 6 \text { and } 8+2
$$

$$
p=(-4) \times 6=-24
$$

and denominator

$$
q=8+2=\frac{8}{2}=4
$$

Hence, rational number $=\frac{p}{q}=\frac{-24}{4}$
(c) Given, $35+(-7)$ and $35-18$

Let numerator, $\quad \rho=35+(-7)=\frac{35}{-7}=-5$
and denominator, $\quad q=35-18=17$
Hence, rational number $=\frac{p}{q}=\frac{-5}{17}$

Question 89:

Write the following as rational numbers in their standard forms.
(a) 35%
(b) 1.2
(c) $-6 \frac{3}{7}$
(d) $240+(-840)$
(e) $115+207$

Solution :

(a) Given, $35 \%=\frac{35}{100}$

7	35
5	5
	1

2	100
2	50
5	25
5	5

By using prime factorisation, we get

$$
35=7 \times 5 \text { and } 100=2 \times 2 \times 5 \times 5
$$

\therefore HCF of 35 and $100=5$
On dividing numerator and denominator by their HCF, we get

$$
\frac{35+5}{100+5}=\frac{7}{20}
$$

(b) Here, $1.2=\frac{12}{10}=\frac{12+2}{10+2}=\frac{6}{5}$
(c) Here, $-6 \frac{3}{7}=-\left(\frac{6 \times 7+3}{7}\right)=\frac{-45}{7}$
(d) Here, $240+(-840)=\frac{240}{-840}$
\because HCF of 240 and $840=120$
On dividing numerator and denominator by their HCF, we get

$$
\begin{aligned}
\frac{240+120}{-840+120} & =\frac{2}{-7} \\
& =\frac{2 \times(-1)}{-7 \times(-1)} \\
& =\frac{-2}{7}
\end{aligned}
$$

(e) Given, $115 \div 207=\frac{115}{207}$

5	115
23	23
	1

3	207
3	69
23	23
	1

By using prime factorisation, we get
$115=5 \times 23$ and $207=3 \times 23 \times 3$
\therefore HCF of 115 and $207=23$
On dividing numerator and denominator by their HCF, we get

$$
\frac{115 \div 23}{207+23}=\frac{5}{9}
$$

Question 90:

Find a rational number exactly halfway between
(a) $\frac{-1}{3}$ and $\frac{1}{3}$
(b) $\frac{1}{6}$ and $\frac{1}{9}$
(c) $\frac{5}{-13}$ and $\frac{-7}{9}$
(d) $\frac{1}{15}$ and $\frac{1}{12}$

We know that, a rational number, which is halfway between two rational number i.e. a and b $=\frac{a+b}{2}$.
(a) Given rational numbers are $\frac{-1}{3}$ and $\frac{1}{3}$.

Here, $a=-\frac{1}{3}$ and $b=\frac{1}{3}$
$\therefore \quad \frac{a+b}{2}=\frac{-\frac{1}{3}+\frac{1}{3}}{2}=\frac{0}{2}=0$
Hence, the exactly halfway between $-\frac{1}{3}$ and $\frac{1}{3}$ is 0 (zero).
(b) Given rational numbers are $\frac{1}{6}$ and $\frac{1}{9}$.

Here, $a=\frac{1}{6}$ and $b=\frac{1}{9}$

$$
\begin{aligned}
\therefore \quad \frac{a+b}{2} & =\frac{\frac{1}{6}+\frac{1}{9}}{2}=\frac{\frac{1 \times 3}{6 \times 3}+\frac{1 \times 2}{9 \times 2}}{2} \\
& =\frac{\frac{3}{18}+\frac{2}{18}}{2} \\
& =\frac{\frac{3+2}{18}}{2}=\frac{\frac{5}{18}}{2}=\frac{5}{18 \times 2}=\frac{5}{36}
\end{aligned} \quad[\because \text { LCM of } 6 \text { and } 9=18]
$$

Solution :

Hence, the exactly halfway between $\frac{1}{6}$ and $\frac{1}{9}$ is $\frac{5}{36}$.
(c) Given rational numbers are $\frac{5}{-13}$ and $\frac{-7}{9}$.

Here, $a=-\frac{5}{13}$ and $b=-\frac{7}{9}$

$$
\begin{aligned}
\frac{a+b}{2} & =\frac{\frac{-5}{13}+\left(-\frac{7}{9}\right)}{2}=\frac{\frac{-5}{13}-\frac{7}{9}}{2} \\
& =\frac{\frac{-5 \times 9}{13 \times 9}-\frac{7 \times 13}{9 \times 13}}{2} \\
& =\frac{\frac{-45}{117}-\frac{91}{117}}{2}=\frac{\frac{-45-91}{117}}{2} \\
& =\frac{-136}{117 \times 2}=\frac{-136}{234}
\end{aligned}
$$

$$
[\because \text { LCM of } 13 \text { and } 9=117]
$$

Hence, the exactly of halfway between $\frac{5}{-13}$ and $\frac{-7}{9}$ is $-\frac{136}{234}$.
(d) Given rational numbers are $\frac{1}{15}$ and $\frac{1}{12}$.

Here, $a=\frac{1}{15}$ and $b=\frac{1}{12}$

$$
\begin{aligned}
\therefore \quad \frac{a+b}{2} & =\frac{\frac{1}{15}+\frac{1}{12}}{2}=\frac{\frac{1 \times 4}{15 \times 4}+\frac{1 \times 5}{12 \times 5}}{2} \\
& =\frac{\frac{4}{60}+\frac{5}{60}}{2}=\frac{\frac{4+5}{60}}{2}=\frac{9}{60 \times 2}=\frac{9}{120} \\
& =\frac{3}{40}
\end{aligned} \quad[\because \text { LCM of } 15 \text { and } 12=60]
$$

Hence, the exactly halfway between $\frac{1}{15}$ and $\frac{1}{12}$ is $\frac{3}{40}$.

Question 91:

Taking $x=\frac{-4}{9}, y=\frac{5}{12}$ and $z=\frac{7}{18}$, find
(a) The rational number which when added to x gives y.
(b) The rational number which subtracted from y given z.
(c) The rational number which when added to z gives us x.
(d) The rational number which when multiplied by y to get x.
(e) The reciprocal of $x+y$.
(f) The sum of reciprocals of x and y.
(g) $(x+y) \times z$
(h) $(x-y)+z$
(i) $x+(y+z)$
(j) $x+(y+z)$
(k) $x-(y+z)$

Solution :

Given, $x=\frac{-4}{9}, y=\frac{5}{12}$ and $z=\frac{7}{18}$
(a) Let we add A to x to get y.

$$
\begin{aligned}
& \therefore \quad A+x=y \\
& \Rightarrow A+\left(\frac{-4}{9}\right)=\frac{5}{12} \\
& \Rightarrow A=\frac{5}{12}-\left(-\frac{4}{9}\right)=\frac{5}{12}+\frac{4}{9}=\frac{5 \times 3+4 \times 4}{36} \\
& \quad=\frac{15+16}{36}=\frac{31}{36}
\end{aligned}
$$

(b) Let we subtract A from y to get z.

$$
\begin{array}{rlrl}
& \therefore & y-A & =z \\
\Rightarrow & \frac{5}{12}-A & =\frac{7}{18} \\
\Rightarrow & -A & =\frac{7}{18}-\frac{5}{12}=\frac{7 \times 2-5 \times 3}{36} \\
& =\frac{14-15}{36}=\frac{-1}{36} \\
\Rightarrow & A & =\frac{1}{36}
\end{array}
$$

(c) Let A be added to z to give \boldsymbol{x}.

$$
\begin{array}{rlrl}
\therefore & A+Z & =x \\
\Rightarrow & A+\frac{7}{18} & =\frac{-4}{9} \\
\Rightarrow & & A & =\frac{-4}{9}-\frac{7}{18}=\frac{-4 \times 2-7 \times 1}{18} \\
& & & =\frac{-8-7}{18}=\frac{-15}{18}=\frac{-5}{6}
\end{array}
$$

[\because LCM of 9 and $18=18$]
(d) Suppose, if A is multiplied by y, then we get x.
i.e. $A \times y=x$
$\Rightarrow A \times \frac{5}{12}=\frac{-4}{9}$
$\Rightarrow \quad A=\frac{-4}{9} \times \frac{12}{5}=\frac{-48}{45}$
(e) Here, $x+y=\frac{-4}{9}+\frac{5}{12}=\frac{-4 \times 4+5 \times 3}{36}$
$[\because$ LCM of 9 and $12=36]$
$\Rightarrow \quad x+y=\frac{-16+15}{36}=\frac{-1}{36}$
\therefore Reciprocal of $x+y=\frac{1}{-1 / 36}=-36$
(f) Reciprocal of x and y is $\frac{1}{x}$ and $\frac{1}{y}$.

$$
\begin{aligned}
\therefore \text { Sum of reciprocals } & =\frac{1}{x}+\frac{1}{y}=\frac{1}{-4 / 9}+\frac{1}{5 / 12} \\
& =\frac{-9}{4}+\frac{12}{5}=\frac{-45+48}{20} \\
& =\frac{3}{20}
\end{aligned}
$$

$[\because$ LCM of 4 and $5=20]$
(g) We have, $(x+y) \times z$

$$
\begin{aligned}
& =\left(\frac{-4}{9} \div \frac{5}{12}\right) \times \frac{7}{18} \\
& =\left(\frac{-4}{9} \times \frac{12}{5}\right) \times \frac{7}{18} \\
& =\frac{-4 \times 12 \times 7}{9 \times 5 \times 18} \\
& =\frac{-56}{135}
\end{aligned} \quad\left[\because \text { reciprocal of } \frac{5}{12}=\frac{12}{5}\right]
$$

(h) We have,

$$
\begin{aligned}
(x-y)+z=\left(\frac{-4}{9}-\frac{5}{12}\right)+\frac{7}{18} & =\frac{-4 \times 4-5 \times 3}{36}+\frac{7}{18} \quad[\because \text { LCM of } 9 \text { and } 12=36] \\
& =\frac{-16-15}{36}+\frac{7}{18}=\left(\frac{-31}{36}+\frac{7}{18}\right) \\
& =\frac{-31+7 \times 2}{36}=\frac{-31+14}{36} \\
& =\frac{-17}{36}
\end{aligned}
$$

(i) Here, $x+(y+z)=\frac{-4}{9}+\left(\frac{5}{12}+\frac{7}{18}\right)=\frac{-4}{9}+\left(\frac{5 \times 3+7 \times 2}{36}\right)[\because$ LCM of 12 and $18=36]$

$$
\begin{aligned}
& =\frac{-4}{9}+\left(\frac{15+14}{36}\right) \\
& =\frac{-4}{9}+\frac{29}{36}=\frac{-4 \times 4+29}{36}=\frac{13}{36}
\end{aligned}
$$

(j) Here, $x \div(y \div z)=\frac{-4}{9}+\left(\frac{5}{12}+\frac{7}{18}\right)=\frac{-4}{9}+\left(\frac{5}{12} \times \frac{18}{7}\right) \quad\left[\because\right.$ reciprocal of $\left.\frac{7}{18}=\frac{18}{7}\right]$

$$
=\frac{-4}{9} \div \frac{15}{14}=\frac{-4}{9} \times \frac{14}{15}=\frac{-56}{135} \quad\left[\because \text { reciprocal of } \frac{15}{14}=\frac{14}{15}\right]
$$

(k) Here, $x-(y+z)=\frac{-4}{9}-\left(\frac{5}{12}+\frac{7}{18}\right)$

$$
\begin{aligned}
& =\frac{-4}{9}-\left(\frac{5 \times 3+7 \times 2}{36}\right)=\frac{-4}{9}-\left(\frac{15+14}{36}\right)[\because L C M \text { of } 12 \text { and } 18=36] \\
& =\frac{-4}{9}-\frac{29}{36}=\frac{-4 \times 4-29}{36}=\frac{-16-29}{36} \\
& =\frac{-45}{36}=\frac{-5}{4}
\end{aligned}
$$

Question 92:

What should be added to $\frac{-1}{2}$ to obtain the nearest natural number?

Solution :

We know that, nearest number of $\frac{-1}{2}$ is 1 .
Let x be added to $-\frac{1}{2}$ to obtain 1 .
Then,

$$
-\frac{1}{2}+x=1
$$

$$
\begin{array}{ll}
\Rightarrow & x=1+\frac{1}{2}=\frac{2+1}{2} \\
\Rightarrow & x=\frac{3}{2}
\end{array}
$$

Hence, $\frac{3}{2}$ should be added to $\frac{-1}{2}$ to obtain nearest natural number.

Question 93:

What should be subtracted from $\frac{-2}{3}$ to obtain the nearest integer?

Solution :

Given rational number is $\frac{-2}{3}$.
We know that, nearest natural number of $\frac{-2}{3}$ is -1 .
Let x be subtracted to $\frac{-2}{3}$ to obtain -1 .
Then,

$$
\frac{-2}{3}-x=-1
$$

$\Rightarrow \quad x=\frac{-2}{3}+1=\frac{1}{3}$
So, we subtract $\frac{1}{3}$ from $\frac{-2}{3}$ to get the nearest integer.

Question 94:

What should be multiplied with $\frac{-5}{8}$ to obtain the nearest integer?

Solution :

Let number be \boldsymbol{x}.
We know that, nearest integer of $-\frac{5}{8}$ is -1
According to the question,

$$
\frac{-5}{8} \times x=-1
$$

$\Rightarrow \quad x=-1 \times \frac{8}{-5}=\frac{8}{5}$
Hence, the required number is $\frac{8}{5}$.

Question 95:

What should be divided by $\frac{-1}{2}$ to obtain the greatest negative integer?
Solution :
Let the number be \boldsymbol{x}.
We know that, greatest negative integer is -1 .
According to the question,

$$
\begin{aligned}
& \frac{1}{2}+x & =-1 \\
\Rightarrow & \frac{1}{2} \times \frac{1}{x} & =-1 \\
\Rightarrow & \frac{1}{x} & =-1 \times \frac{2}{1} \\
\Rightarrow & \frac{1}{x} & =\frac{-2}{1} \\
\Rightarrow & x & =\frac{-1}{2}
\end{aligned} \quad\left[\because \text { reciprocal of } x=\frac{1}{x}\right]
$$

Hence, the required number is $\frac{-1}{2}$.

Question 96:

From a rope 68 m long, pieces of equal size are cut. If length of one piece is $4 \frac{1}{4} \mathrm{~m}$, find the
number of such pieces.

Solution :

Given, length of the rope $=68 \mathrm{~m}$
and length of small piece $=4 \frac{1}{4} \mathrm{~m}=\frac{(4 \times 4)+1}{4} \mathrm{~m}=\frac{17}{4} \mathrm{~m}$
\therefore Number of pieces $=\frac{\text { Total length of rope }}{\text { Length of small piece }}=\frac{68}{\frac{17}{4}}$

$$
\begin{aligned}
& =\frac{68}{1} \times \frac{4}{17} \quad\left[\because \text { reciprocal of } \frac{17}{4}=\frac{4}{17}\right] \\
& =4 \times 4=16
\end{aligned}
$$

Hence, the number of pieces is 16 .

Question 97:

If 12 shirts of equal size can be prepared from 27 m cloth, what is length of cloth required for each shirt?

Solution :

Given, total size of available cloth $=27 \mathrm{~m}$
Since, 12 shirts can be made from 27 m long cloth.
\therefore Length of cloth required for each shirt $=\frac{\text { Total available cloth }}{\text { Number of shirts }}$

$$
\begin{aligned}
& =\frac{27}{12}=\frac{9}{4} \\
& =2.25 \mathrm{~m}
\end{aligned}
$$

Hence, 2.25 m cloth required for each shirt.

Question 98:

Insert 3 equivalent rational numbers between
(i) $\frac{-1}{2}$ and $\frac{1}{5}$
(ii) 0 and - 10

Solution :
(i) Given, rational numbers are $-\frac{1}{2}$ and $\frac{1}{5}$.

For common denominator, LCM of 2 and $5=10$

$$
\therefore \quad \frac{-1 \times 5}{2 \times 5}=\frac{-5}{10} \text { and } \frac{1 \times 2}{5 \times 2}=\frac{2}{10}
$$

Hence, three equivalent rational numbers between $\frac{-5}{10}$ and $\frac{2}{10}$ are $\frac{-3}{10}, \frac{-6}{20}, \frac{-9}{30}$.
(ii) Three equivalent rational numbers between 0 and -10 are $-2, \frac{-10}{5}, \frac{-20}{10}$.

Note in this question, student should note that answer can vary.

Question 99:

150 students are studying English, Maths or both. 62% of the students are studying English
and 68% are studying Maths. How many students are studying both?

Solution :

Given, total students in the class studying English, Maths or both $=150$
Students studying English $=62 \%$ of $150=\frac{62}{100} \times 150=93$
Students studying Maths $=68 \%$ of $150=\frac{68}{100} \times 150=102$
Total students studying both $=$ Students studying English + Students studying Maths - Students studying English, Maths or both

$$
=93+102-150=45
$$

Question 100:

A body floats $\frac{2}{9}$ of its volume above the surface. What is the ratio of the body submerged volume to its exposed volume? Rewrite it as a rational number.

Solution :

Given, volume of body exposed $=\frac{2}{9}$
\therefore Volume of body submerged $=1$ - Volume of body exposed

$$
=1-\frac{2}{9}=\frac{9-2}{9}=\frac{7}{9}
$$

\therefore Required ratio $=\frac{7}{9}: \frac{2}{9}=\frac{7}{9}+\frac{2}{9}=\frac{7}{9} \times \frac{9}{2}=\frac{7}{2}=7: 2$
In rational number $=\frac{7}{2}$

Solution of Previous Years' Question Papers

2019
$1^{\text {st }}$ term
3) Hema had $\frac{5}{8} \mathrm{Kg}$ of tea. She repacked the tea into bags of $\frac{5}{32} \mathrm{Kg}$ each. How many bags of tea did Hema get?
Let the no. of bags of tea be x
$\therefore \frac{5 x}{32}=\frac{5}{8}$
or, $x=\frac{5 \times 32}{5 \times 8}=4$ bags
4) Simplify: $\left.\left[\left(\frac{5}{9} \times \frac{3}{7}\right) \div \frac{8}{21}\right] \times\left(\frac{-3}{5}\right)\right]$ $\frac{5}{9} \times \frac{3}{7} \times \frac{21}{8} \times \frac{-3}{5}=\frac{-3}{8}$

1) Sourav got a baby rabbit and a pup. The rabbit weighs $\frac{7}{16} \mathrm{Kg}$ and the pup weighs $\frac{3}{4} \mathrm{Kg}$. How many times is the pup heavier than the baby rabbit?
Required times $=\frac{3}{4} \div \frac{7}{16}=\frac{3 \times 16}{4 \times 7}=\frac{12}{7}=1 \frac{5}{7}$ times
$3^{\text {rd }}$ Term
3. Multiply: $\frac{-8}{57} \times \frac{19}{-32}$

Ans-1/12
$1^{\text {st }}$ Term
ii) After simplifying $\frac{4}{5} \times \frac{3}{7} \times \frac{1}{8}$ we get
a) $\frac{3}{70}$
b) $\frac{3}{35}$
c) $\frac{4}{70}$
d) none of these
ii) After simplifying $\frac{4}{5} \times \frac{3}{7} \quad \times \frac{1}{8}$ we get
a) $\frac{3}{70}$
i) Reciprocal of $1-3 \frac{3}{4}$ I is $\frac{4}{15}$
ii) Expressing $\frac{27}{64}$ in power notation we get $\left(\frac{3}{4}\right)^{3}$.
v)Subtracting $\frac{-3}{5}$ from $\frac{2}{5}$ we get 1
i)All rational numbers are fractions. FALSE
ii)Absolute value of $-\left(\frac{7}{8}\right)^{2}$ is $\frac{49}{64}$. TRUE
v) solving $|x|=21 \div 3 \frac{1}{2}$ we get 6 or -6 .TRUE
(iii) Find the difference: $-\frac{3}{7}-\frac{4}{7}$.
(iii) $-\frac{3}{7}-\frac{4}{7}=-\frac{7}{7}=-1$
(iv) Divide: $\frac{9}{-14} \div 6$.
(iv) $-\frac{9}{14} \div 6=\frac{-9}{14} \times \frac{1}{6}=\frac{-3}{28}$
(v) Express $-\frac{1}{32}$ in power notation.
(v) $-\frac{1}{32}=-\frac{1}{2^{5}}$
(iii) Add: $\left(-1 \frac{5}{12}\right)+2 \frac{1}{16}$
(iii) $\left(-1 \frac{5}{12}\right)+2 \frac{1}{16}$
$=-\frac{17}{12}+\frac{33}{16}=\frac{-17 \times 4+33 \times 3}{48}=\frac{-68+99}{48}=\frac{31}{48}$
(iv) Simplify: $\frac{.11}{-25}+\frac{9}{20}-\frac{-17}{50}+\frac{51}{100}$
(iv) $\frac{11}{-25}+\frac{9}{20}-\frac{-17}{50}+\frac{51}{100}$
$=\frac{-220+225+170+255}{500}=\frac{430}{500}=\frac{43}{50}$
$2^{\text {nd }}$ Term
(iii) Divide: $-\frac{5}{9} \div \frac{2}{-3}$
(iii) $-\frac{5}{9} \div \frac{2}{-3}$
$=-\frac{5}{9} \times \frac{-3}{2}$
$=\frac{5}{6}$
(v) The product of two numbers is $-24 \frac{1}{2}$. If one of the numbers is $5 \frac{1}{4}$, find the other number.

Or
By what number should we multiply $-4 \frac{9}{14}$ so that the product is $4 \frac{8}{63}$?
(v) The product of two numbers is $-24 \frac{1}{2}=-\frac{49}{2}$

One of the numbers is $5 \frac{1}{4}=\frac{21}{4}$
Let the other number be x .
Then $x \times \frac{21}{4}=-\frac{49}{2}$
Or $x=-\frac{49}{2} \div \frac{21}{4}$
Or $x=-\frac{49}{2} \times \frac{4}{21}=\frac{-14}{3}=-4 \frac{2}{3}$
Or
Let the required number be x, then
BTP
$-4 \frac{9}{14} \times x=4 \frac{8}{63}$

$$
\text { Or } x=4 \frac{8}{63} \div\left(-4 \frac{9}{14}\right)
$$

Or $\mathrm{x}=\frac{260}{63} \div\left(-\frac{65}{14}\right)$
Or $x=\frac{260}{63} \times-\frac{14}{65}=-\frac{8}{9}$
i)Simplify: $3 \frac{1}{7} \times\left(3 \frac{1}{2}-5 \frac{1}{4}\right) \times\left(5 \frac{1}{4}+3 \frac{1}{2}\right) \times 1 \frac{1}{11}$

Ans: $\frac{22}{7} \times\left(-\frac{7}{4}\right) \times \frac{35}{4} \times \frac{12}{11}=\frac{-105}{2}=-52 \frac{1}{2}$

Exercise Problems

1. What is the additive inverse of $-4 / 9$?
2. What is the additive inverse of $-9 / 11$?
3. What is the additive inverse of $6 / 7$?
4. State true/false: The rational number $-12 /(-5)$ and $-7 / 17$ are on opposite side of zero on the number line.
5. Which is greater: $2 / 3$ or $5 / 2$
6. Which is greater: $-6 / 7$ or $-5 / 4$
7. Which is greater: $-1 / 5$ or $1 / 5$
8. Which is greater: $-43 / 7$ or $-45 / 6$
9. Find: $-3 / 7+2 / 3$
10. Find: $-4 / 6+(-2 / 11)$
11. Express $6 / 7$ as a rational number with denominator -14
12. Express $6 / 7$ as a rational number with denominator 70
13. Express $6 / 7$ as a rational number with denominator -21
14. Express $6 / 7$ as a rational number with denominator -49

15 . Is the number $4 /(-3)$ rational?
16. Is 6 a positive number?
17. List 5 positive rational numbers.
18. Separate positive and negative rational numbers from the following rational numbers: $(-5) /(-7), 12 /(-5), 7 / 4,13 /(-9), 0,(-18) /(-7),(-95) / 116,(-1) /(-9)$
19. Which of the following rational numbers are positive? $-8 / 7,9 / 8,(-19) /(-13),(-$ 21)/13
20. Which of the following rational numbers are negative? $-3 / 7,(-5) /(-8), 9 /(-83)$, $(-115) /(-197)$
21. Show that the rational numbers $-15 / 35$ and $4 /(-6)$ are not equal.
22. Find the standard form of $-18 / 45$
23. Find the standard form of $-12 / 18$
24. Find the standard form of $-63 / 210$
25. Express the rational number to the lowest form: $4 / 22$
26. Express the rational number to the lowest form: $-36 / 180$
27. Express the rational number to the lowest form: $-32 /(-56)$
28. What is the standard form of $-33 / 69$?
29. What is the standard form of $125 /(-175)$?
30. Fill in the blanks: The standard form of $55 /(-99)$ is \qquad

