

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORK SHEET 19

Subject: PHYSICS

20.6.20

 $1 \times 15 = 15$

CLASS: XII

Topic: B on the axis of a circular coil & it's center. Ampere's circuital law and it's application

to find **B** for infinite current carrying wire.

Chapter: Electromagnetism

Multiple Choice Question:

- Which one of the followings is not true for Ampere's law?
 - (a) this law is differential form of **B**
 - (b) this law is based on the principal of electromagnetism
 - (c) this law is related to closed current carrying curve
 - (d) this law is valid for symmetrical current distribution
- 2. A circular coil of radius R carries an electric current i. The magnetic field at a point on the axis at a distance x from the centre of the $coil(x \gg R)$ varies as
 - (a) $\frac{1}{a}$

- (b) $\frac{1}{x^{3/2}}$ (c) $\frac{1}{x^2}$ (d) $\frac{1}{x^3}$

- For a wire of infinite length \vec{B} is
 - (a) $B = \frac{\mu_o i}{2\pi r}$
- (b) $B = \frac{2\pi r}{\mu i}$ (c) B = o (d) $B = \frac{2\mu_o i}{r}$
- Magnetic field on the axis of a current carrying circular coil is
 - (a) $B = \frac{\mu_o i}{2} \cdot \frac{r^2}{(r^2 + r^2)^{3/2}}$ (b) $B = \mu_o ni$ (c) $B = \frac{\mu_o i}{2} \cdot \frac{(r^2 + x^2)^{3/2}}{r^2}$ (d) none of the above

- \vec{B} at the centre of the current carrying circular coil having N turns
 - (a) $B = \frac{\mu_o NI}{2\pi}$
- (b) $B = \frac{\mu_o I}{2r}$ (c) $B = \mu_o NI$
- (d) $B = \frac{\mu_o NI}{r}$
- Magnetic intensity (in CGS) at the centre of a current causing circular conductor is
 - (a) $H = \frac{2\pi i}{r}$

- (b) $H = \frac{2i}{r}$ (c) $H = \frac{\pi i}{r}$ (d) $H = \frac{2\pi r}{i}$
- Expression for closed line integnel
 - (a) $\oint \vec{A} \cdot \vec{dl}$

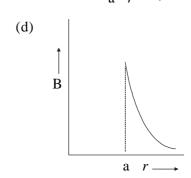
- (b) $\int \vec{A} \cdot d\vec{l}$ (c) $\int \vec{A} \cdot d\vec{l}$ (d) $\oint \vec{A} \cdot d\vec{l}$
- The magnetic induction at a point P which is distant 4 cm from a long current carrying wire is 10^{-8} Tesla. The field of induction at a distance 12 cm from the same current would be
 - (a) 3.33 x 10⁻⁹ Tesla
- (b) $1.11 \times 10^{-4} Tesla$ (c) $3 \times 10^{-3} Tesla$ (d) $9 \times 10^{-2} Tesla$

9. For the magnetic field to be maximum due to a small element of current carrying conductor at a point, the angle between the element and the line joining the element to the given point must be

 $(1) 0^0$

 $(2) 90^{\circ}$

 $(3) 180^{\circ}$


(4) 45

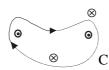
10. The magnetic field due to a straight conductor of uniform cross-section of radius a and carrying a steady current is represented by

(a) A B B

(b)
B

(c) $\begin{array}{c|c} & & \\$

11. The distance at which the magnetic field on axis as compared to the magnetic field at the centre of the coil carrying current I and radius R is 1/8, would be

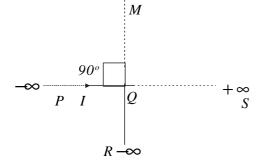

(a) R

(b) $\sqrt{2}R$

(c) 2R

(d) $\sqrt{3}R$

12. Four conductors carrying 2.0 A of current into or out of the page are shown in the diagram. A path C is indicated for the line integral ∫B.ds. Find the value of the integral for the path C


(a) $2\mu_o$

(b) Zero

(c) $-2\mu_{0}$

(d) $-8\mu_{\rm o}$

13. An infinitely long conductor PQR is bent to form a right angle as shown. A current I flows through PQR. The magnetic field due to this current at the point M is H_1 . Now, another infinitely long straight conductor QS is connected at Q, so that the current is 1/2 in QR as well as QS. The current in PQ remaining unchanged. The magnetic field at M is now H_2 . The ratio H_1/H_2 is given by

(a) $\frac{1}{2}$

(b)

(c) $\frac{2}{3}$

(d) 2

14.	A polygon shaped wire is inscribed in a circle of radius R. The magnetic induction at the centre of
	polygon, when current flows through the wire is

- (a) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{2\pi}{n}\right)$ (b) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{4\pi}{n}\right)$ (c) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{\pi}{n}\right)$ (d) $\frac{\mu_0 nI}{2\pi R} \tan\left(\frac{\pi}{n^2}\right)$

15. Magnitude of magnetic field is maximum for a current carrying conductor

(a) at the centre

(b) either side of the axis

(c) at infinity

(d) none of the above

Ambarnath Banerjee