

Class - X

Chapter – Current Electricity

Date – 13.06.20

	Topic – Resistance
ons.	$1 \times 15 = 15$

Choose the correct option for the following questions.

- 1. If temperature is increased, then the resistivity of a conductor
 - a. Increases
 - b. Decreases
 - c. Remains same
 - d. First increases then decreases

2. If temperature is increased, then the conductivity of a conductor –

- a. Increases
- b. Decreases
- c. Remains same
- d. First increases then decreases
- 3. If temperature is increased, then the resistivity of a semi conductor
 - a. Increases
 - b. Decreases
 - c. Remains same
 - d. First increases then decreases
- 4. If temperature is increased, then the conductivity of a semi conductor
 - a. Increases
 - b. Decreases
 - c. Remains same
 - d. First increases then decreases
- 5. Mercury becomes super conductor bellow
 - a. 6.2 K
 - b. 2.6 K
 - c. 4.2 K
 - d. 2.4 K
- 6. For series combination of resistances
 - a. Potential drops across all the resistances are same
 - b. Current through all the resistances are same
 - c. Both a. and b. are correct
 - d. None of these

- 7. For parallel combination of resistances
 - a. Potential drops across all the resistances are same
 - b. Current through all the resistances are same
 - c. Both a. and b. are correct
 - d. None of these
- 8. For parallel combination of resistances
 - a. The current through the largest resistance will be lowest
 - b. The current through the largest resistance will be greatest
 - c. The current through the smallest resistance will be lowest
 - d. Current through all the resistances are same
- 9. For series combination of resistances
 - a. The potential drop across the largest resistance will be lowest
 - b. The potential drop across the largest resistance will be greatest
 - c. The potential drop across the smallest resistance will be greatest
 - d. potential drop across all the resistances are same
- 10. The equivalent resistance of the combination in between point A and B will be
 - a. 11Ω
 - b. $\frac{20}{19} \Omega$
 - $c. \quad \frac{19}{20} \ \Omega$

 - d. $\frac{38}{6} \Omega$

4-2 fig for 0-10 A

22

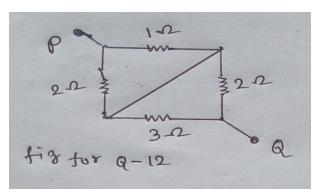
fig for a - 11

B

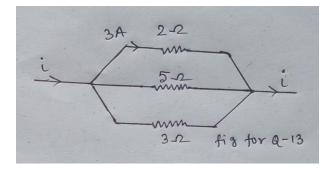
B

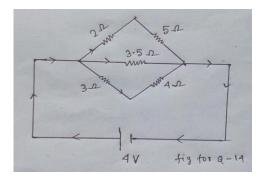
32

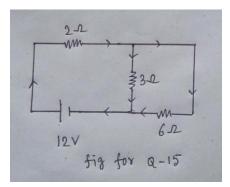
0-2


12 m

A


- 11. The equivalent resistance of the combination in between point A and B will be
 - a. 6Ω
 - $b. \ \frac{6}{11} \ \Omega$ c. $\frac{11}{6} \Omega$


d.
$$\frac{-}{6}\Omega$$


- 12. The equivalent resistance of the combination in between point P and Q will be
 - a. $\frac{8}{15} \Omega$
 - b. $\frac{15}{8} \Omega$
 - c. $\frac{15}{28} \Omega$
 - d. $\frac{28}{15} \Omega$

- 13. What will be the current through 5Ω and 3Ω resistances?
 - a. 1.2 A, 2 A
 - b. 1 A, 1.2 A
 - c. 3.3 A, 2 A
 - d. 2 A, 3.3 A
- 14. What is the main current that is coming out of the cell?
 - a. $\frac{1}{7}A$
 - b. $\frac{16}{7}$ A
 - c. 7 A
 - d. 4 A
- 15. What will be the potential drop across 2 Ω resistance?
 - a. 3 volts
 - b. 6 volts
 - c. 8 volts
 - d. 10 volts

Name of the teacher - Soumitra Maity