

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

ANSWER KEY – 3 TOPIC – LOGIC GATES & COMBINATIONAL CIRCUITS

SUBJECT: COMPUTER APPLICATION **CLASS: XII** F.M.: 15 DATE: 05.05.2020 > Choose the correct option: (1X15=15)1) The following symbol is of: (a) NOT (b) XOR (c) NAND (d) XNOR 2) $\overline{AB} + A\overline{B}$ may also be represented as: **(b)** A ⊕ B (a) A ⊕ B (d) A + B(c) A . B 3) How many NAND gate(s) are required to form a XOR gate?: (a) 1 (b) 2 (c) 4 (d) 5 4) The following symbol is of: (a) NOT (b) XOR (c) NAND (d) XNOR 5) How many NAND gate(s) are required to form a XNOR gate?: (a) 3 (b) 6 (c) 9 (d) 12 6) $\overline{A} \ \overline{B} + AB$ may also be represented as: (a) A ⊕ B (b) A \oplus B (c) A . B (d) A + B7) How many NOR gate(s) are required to form a XNOR gate? : (a) 5 (b) 6 (c) 7 (d) 8

(d) None of these

(c) 1

8) The minimum number of inputs required for XOR is:

(b) 2

(a) 3

9) The minimum (a) 4	m number of ir (b) 3	nputs required	for XNO (c) 2	R is: (d) 1		
10) $A \oplus B$ may (a) $\overline{A}B + A\overline{B}$	also be repres	ented as:: (B) A . B		(c) A + B	(d) \overline{A}	$\overline{B} + AB$
11) NAND gate (a) Uniform Ga		(b) Universal (Gate	(c) Unilateral	Gate	(d) Unidigital Gate
12) $\overline{A} \oplus B \text{ may}$ (a) $\overline{AB} + A\overline{B}$	· · · · ·	sented as: (b) A . B		(c) A + B		(d) $\overline{A} \overline{B} + AB$
13) How many complements on an expression don't change its value?: (a) 1 (b) 2 (c) 3 (d) None of these						
14) How many NOR gate(s) are required to form a XOR gate?: (a) 3 (b) 6 (c) 9 (d) 12						
15) All types of logic gates can be formed by suitable combinations of gates only: (a)NOT (b) AND (c) NOR (d) XOR						

PRITHWISH DE