

St. Lawrence High School

A Jesuit Christian Minority Institution

Term: 1st Work Sheet – 22

Class - XI

Subject – Physics

Date - 10.07.20

Chapter – Work, Power & Energy

Topic – Conservative and nonconservative system

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. According to work-energy theorem, change in kinetic energy is equal to work done by
 - a. Conservative force
 - b. Non-Conservative force
 - c. External Conservative force
 - d. All of above
- 2. Work energy theorem is applicable for
 - a. Only gravitational force
 - b. Only frictional force
 - c. Any central force
 - d. All of the above
- 3. The work done by a conservative force is
 - a. Path dependent
 - b. Path independent
 - c. Zero
 - d. None of these
- 4. The work done by a non conservative force over a close path is
 - a. Positive always
 - b. Negative always
 - c. Zero
 - d. Can be +ve or -ve, but can never be zero
- 5. The work done by a non conservative force over a close path is
 - a. Positive always
 - b. Negative always
 - c. Zero always
 - d. Can be +ve or -ve, but can never be zero
- 6. A person pulls a bucket of water from a well of depth h. If the mass of the uniform rope is m and that of the bucket full of water is M, then the work done by the person is –

a.
$$\left(m + \frac{M}{2}\right)gh$$

b.
$$\frac{1}{2}(m+M)gh$$

c.
$$(m+M)gh$$

d.
$$\left(\frac{m}{2} + M\right)gh$$

- 7. A projectile is fired from the origin with a velocity v at an angle θ with x axis. The speedof the projectile at an altitude h is
 - a. $v \cos \theta$

b.
$$\sqrt{v^2 - 2gh}$$

c.
$$\sqrt{v^2 \sin^2 \theta - 2gh}$$

d. None of these

8.	A particle of mass m moves from rest under the action of a constant force F which acts for two seconds. The
	maximum power attained is –
	a. 2Fm
	b. F^2/m
	c. 2F/m
	d. $2F^2/m$
9.	A block of mass 5kg is raised from the bottom of a lake to a height of 3m with out any change in kinetic energy.
9.	
	if the density of the block is 3000kg/m ³ , then the work done is equal to –
	a. 100J
	b. 150J
	c. 50J
	d. 75J
10	A force $\vec{F} = 3t\hat{\imath} + 5\hat{\jmath}$ N acts on a body due to which its displacement varies as $\vec{S} = 2t^2\hat{\imath} - 5\hat{\jmath}$ m. work done by
	this force in 2sec is –
	a. 32J
	b. 24J
	c. 46J
	d. 20J
11	
11.	An open knife of mass m is dropped from a height h on a wooden floor. If the blade penetrates up to the depth d
	into the wood, the average resistance offered by the wood is –
	a. $mg\left(1+\frac{h}{d}\right)$
	b. $mg\left(1+\frac{h}{d}\right)^2$
	c. $mg\left(1-\frac{h}{d}\right)$
	d. $mg\left(1+\frac{d}{h}\right)$
12	A bullet moving with speed 100m/s can just penetrate into two planks of equal thickness. Then the number of
	such planks it can penetrate if the speed doubled is –
	a. 6
	b. 10
	c. 4
	d. 8
12	
13.	A ball is dropped onto a floor from height of 10m. if 20% of its initial energy is lost, then the height of bounce is
	a. 2m
	b. 4m
	c. 8m
	d. 6.4m
14.	A spring of spring constant $5 \times 10^3 N/m$ is stretched initially by 5cm from the unstitched position. The work
	required to further stretch the spring by another 5cm is –
	a. 6.25 N-m
	b. 12.50 N-m
	40.7734
	d. 25 N-m
15.	A pump is required to lift 800kg of water per minute from a 10m deep well and eject it with speed of 20m/s. the
	required power in watt is –
	a. 6000
	b. 4000
	c. 5000
	d. 8000 Name of the teacher – Soumitra Maity