

# ST. LAWRENCE HIGH SCHOOL

### A JESUIT CHRISTIAN MINORITY INSTITUTION



## Solutions of worksheet-8

#### SUBJECT - MATHEMATICS

#### **Pre-test**

**Chapter: Continuity & Differentiability** Class: XII

**Topic: Continuity & Differentiability** Date: 13.06.2020

Choose the correct option

 $(1 \times 15 = 15)$ 

- 1. The function f(x) is continuous at x=0 if
  - a)  $\lim_{x\to 0} f(x)$  exists.
  - b) f(0) is infinite.
  - c)  $\lim_{x\to 0} f(x) = f(0)$
  - d)  $\lim_{x\to 0+} f(x) = \lim_{x\to 0-} f(x)$
- 2. The function f(x) = |x| is
  - a) Continuous at all real values of x
  - b) Discontinuous at x=0
  - c) Continuous only at x=0
  - d) None of these.
- 3. The greatest integer function f(x) = [x] is
  - a) Continuous at all real values of x
  - b) Continuous only at non-integral values of x
  - c) Continuous at all integral values of x
  - d) None of these.
- 4. The function  $f(x) = x^k$  is continuous at x = k, when
  - a)  $k \neq 0$ , b) k < 0, c)  $k \leq 0$ , d)  $k \geq 0$

- 5. The point of discontinuities of the function  $f(x) = \frac{x+2}{2x^2-x-1}$  are
  - a)  $\frac{1}{2}$ , -1, b)  $-\frac{1}{2}$ , -1, c)  $-\frac{1}{2}$ , 1, d)  $\frac{1}{2}$ , 1
- 6. The function  $f(x) = \frac{1}{\sin x \cos x}$  is discontinuous at
  - a)  $n\pi + \frac{\pi}{4}$ ,  $n \in \mathbb{Z}$  , b)  $n\pi + (-1)^n \frac{\pi}{4}$ ,  $n \in \mathbb{Z}$  , c)  $n\pi \frac{\pi}{4}$ ,  $n \in \mathbb{Z}$  , d)  $n\pi + \frac{3\pi}{4}$ ,  $n \in \mathbb{Z}$
- 7. The function  $f(x) = \begin{cases} \frac{|x-1|}{x-1}, & when \ x \neq 1 \\ 0, & when \ x = 1 \end{cases}$ 
  - a) Continuous at all real values of x
  - b) Discontinuous at x=1
  - c) Continuous only at x=1
  - d) None of these.
- 8. Let f(x + y) = f(x) + f(y),  $\forall x, y \in \mathbb{R}$ . If f(x) is continuous at x = 0, then f(x) = 0
  - a) Continuous at all real values of x
  - b) Discontinuous at x=1
  - c) Continuous only at x=1
  - d) None of these.
- 9. The function  $f(x) = \begin{cases} 2x+1, & when \ x < 2 \\ k, & when \ x = 2 \\ 3x-1, & when \ x > 2 \end{cases}$

Find the value of k for which f(x) is continuous at x=2.

- a) 5, b) 0, c) -2, d) 3
- **10.** The function f(x) = |x + 1| *is*
  - a) Continuous at x = -1
  - b) Differentiable at x = 1
  - c) Differentiable at  $x = \pm 1$
  - d) None of these.
- 11. Let the function f(x) = |x|. Then at x = 0 the function is
  - a) Not Continuous.
  - b) Continuous but not differentiable
  - c) Differentiable but not Continuous
  - d) Differentiable and Continuous.

12. The function 
$$f(x) = \begin{cases} x \sin \frac{1}{x} & when \ x \neq 1 \\ 0, & when \ x = 1 \end{cases}$$
  
Then at  $x = 0$  the function is –

- a) Not Continuous.
- b) Continuous but not differentiable
- c) Differentiable but not Continuous
- d) Differentiable and Continuous.
- 13. The function f(x) = x [x], where [.] denotes the greatest integer function, is
  - a) Continuous everywhere.
  - b) Continuous only at non-integral values of x.
  - c) Continuous at all integral values of x.
  - d) Differentiable everywhere.
- 14. The function  $f(x) = 1 + |\cos x|$  is
  - a) Continuous no where
  - b) Continuous everywhere
  - c) Not differentiable at x=0
  - d) Not differentiable at  $x = n\pi$ ,  $n \in \mathbb{Z}$ .
- 15. The set of points where the function f(x) given by  $f(x) = |x 3| \cos x$  is differentiable, is
  - **a)** ℝ
  - **b)**  $\mathbb{R} \{3\}$
  - c)  $(0,\infty)$
  - d) None of these.

Prepared by :- SUKUMAR MANDAL (SkM).