

SOLUTION WORKSHEET-15

SUBJECT - STATISTICS

Term: 1st

Topic - POISSON DISTRIBUTION Full Marks: 15

Class: XII Date:16.06.2020

Q1. Select the correct alternative of the following questions.

(i)	$X \sim Poisson(\lambda)$, then rth order factorial moment $\mu_{[r]} =$						
	a) λ^r	b) λ^{r+1}	c) λ^{r-1}		d) none of these		
(ii)	A random variable X denotes no of misprints per page of a book. The average of X is 3. Then the variance of X is						
	b) 2	b) 3	c) 2.25		d) none of these		
(iii)	Poisson distribution has double modes at X=3 and X=4, then CV is a) 100% b) 200% c) 50% d) none of						
these		-)	-)		-,		
(iv)	Binomial distribution tends to Poisson distribution when n is too a) small (a, b) large $(a, b) = 0.5$						
	a) small	b) large	c) 0.5		d) none of these		
(v)	A Poisson distribution has double modes at X=5 and X=6, then parameter isa) 5b) 6c) 5.5d) none of these						
(vi)	X ~ <i>Poisson</i> (1), <i>then</i> β_2 is equal to a) 0 b) 2 c) 4 d) none of these						
	, 				,		
(vii)	$\begin{array}{ll} X \sim Poisson(\lambda), P(X \leq a) \text{ is} \\ a) \text{ left continuous} & b) \text{ right continuous} \end{array}$			c)continuous	d) none of these		
(viii)	If for a random variable $X \sim Poisson(1)$, $E(X-E(X))^4$ is equal to a) 0 b) 1 c) 4 d) none of these						

(ix)	If a random variable X defines the number of accidents, then X follows						
	a) binomial	b) Poisson	c) Uniform	d) none of these			
(x)	If $X \sim Poisson(2)$, then P(X=2) is						
	a) $2e^{-2}$	b) 2 <i>e</i> ²	c) 2 <i>e</i> ⁻¹	d) none of these			
(xi)	If $X \sim Poisson(1)$, then P($X \le 0$) is						
	a) $2e^{-2}$	b) 2 <i>e</i> ²	c) <i>e</i> ⁻¹	d) none of these			
(xii)	Standard deviation of a Poisson distribution is 4. Then the value of β_1 is						
	a) 0.625	b) 0.675	c) 0.657	d) none of these			
(xiii)	The probability distribution which has mean equal to its standard deviation is						
	a) binomial	b) Poisson	c) Uniform	d) none of these			
(xiv)	The 3 rd order central moment of Poisson (4) is						
	a) 4	b) 3	c) 6	d) none of these			
(xv)	If $X \sim Poisson(2.5)$, then mde lies at $X=$						
	a) 2	b) 3	c)4	d) none of these			

`

Prepared by

Sanjay Bhattacharya