

A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION OF WORKSHEET-11

SUBJECT - STATISTICS

Term: 1 st								
Topi	c – CEN	TRAL TENDE	NCY		Class: XI			
Full Marks: 15				Date:01 .07. 2020				
Q1.	Select	Select the correct alternative of the following questions.						
	(i)	The marks of 5 students in a class test are 2, 4, 8, 16. A suitable measure of these marks is						
		(a) mean	(b) geometric mear	(c) highest value	(d) none of these			
	(ii)	The GM of $2,2^2,, 2^9$ is						
		(a) 32	(b) 64	(c) 124	(d) none of these			
	(iii)	Geometric mean of first n+1 even natural numbers is						
		(a)2 $(n!)^{n+1}$	(b) n	(c) $2((n+1)!)^{\frac{1}{n+1}}$	(d) none of these			
	(iv)	If all the Observation is equal to -3, then the gm is equal to						
		(a)2	(b)-3	(c)4	(d) none of these			
	(v)	Geometric mean of (-2n),-(2n-1),, -1, 0, 1,, (2n-1),2n is						
		(a) -1	(b) 0	(c) $\frac{n-1}{2}$	(d) none of these			
	(vi)	Geometric mean of religion of several people						
		(a)n-1	(b) 0	(c) $\frac{n-1}{2}$	(d) none of these			
	(vii)	Geometric mean can be calculated of a set having observation						
		(a) countably	finite	(b) countably	v infinite			

(d) none of these

(c) uncountably finite

(viii)	If 5x=7y and a (a) 0	geometric mea (b)1	n of x is 7, then geome (c) 5	tric mean of y is (d) none of these		
(ix)	Geometric mean does not depends upon the change of (a) base (b) scale (c) both (d)none of these					
	(a) base	(b) scarc	(c) both	(a)none of these		
(x)	The combined geometric mean lies between the geometric mean of two given sets					
	(a) always	(b) never	(c) sometimes	(d) none of these		
(xi)	If the minimum (a) < -4	m value of a set (b) > -4	t of observations is -4, (c) = -4	then the geometric mean is (d) none of these		
(xii)	The product of ratio of of geometric mean from to all the observations is (a) -1 (b) 1 (c) 0 (d) none of these					
(xiii)	i) There are 10 observations with geometric mean 3. If 3 is divived to all the observations then the geometric mean of the new set is					
	(a) -3	(b) 1	(c) 3	(d) none of these		
(xiv)	There are 10 observations with gm. 4. If all the observations be mutiplied by 4 then the mean of the new set is					
	(a)11	(b)1 2	(c) 16	(d) none of these		
(xv)	if there are two sets of observations with n values and geometric mean respectively $\frac{1}{5}$ and 5 then the composite geometric mean is					
	(a) -5	(b) 1	(c) 5	(d) none of these		

Prepared by Sanjay Bhattacharya