

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION-11(CLASS-11)

SUBTOPIC- DETERMINATION OF OXIDATION NUMBER

SUBJECT – CHEMISTRY DURATION – 30 mins

F.M. - 15 DATE -26.06.20

1.1 The equivalent mass of $K_2Cr_2O_7$ in acidic medium is expressed in terms of its molecular mass (M) as-

(a) M/2 (b) M/5 (c) M/3 (d) M/6

Ans. d

1.2 In which of the following compounds, nitrogen exhibits the highest oxidation state-

(a) N_2H_4 (b) NH_3 (c) N_3H (d) NH_2OH

Ans. c

1.3 Which of the compounds can exist together?

(a) HgCl₂, SnCl₂(b) FeCl₃, KI (c) FeCl₃, SnCl₂ (d) FeCl₂, SnCl₂

Ans. d

1.4 One mole of ferrous oxalate requires____ moles of MnO₄⁻ to get oxidised completely in an acidic medium-

(a) 0.6 moles (b) 0.4 moles (c) 0.2 moles (d) 7.5 moles

Ans. b

1.5 H_2O_2 changes $Cr_2O_7^{2\cdot}$ ion to CrO_5 in an acidic medium, oxidation state of Cr in CrO_5 is-(a) +6 (b) +5 (c) -10 (d) +3

Ans. a

1.6 H₂SO₄ acts as a strong oxidising agent. In which of the reaction, is it not acting as an oxidising agent?

(a) C + $2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$ (b) $CaF_2 + 2H_2SO_4 \rightarrow CaSO_4 + 2HF$

(c) S + $2H_2SO_4 \rightarrow 3SO_2 + H_2O$

(d) Cu + $2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$

Ans. b

1.7 During a reaction of oxalic acid, potassium chlorate and sulphuric acid, the oxidation number of which of the element undergoes a maximum change-

(a) H (b) S (c) C (d) Cl

Ans. d

1.8 Find the redox reaction-

(a) In atmosphere, O₃ from O₂ by lighting (b) Reaction of H₂SO₄ with NaOH (c) Both oxidation and reduction reaction (d) Evaporation of water Ans. c 1.9 Find the oxidation state of I in H₄IO₆⁻ (a) +7 (b) + (c) +1 (d) -1Ans. a 1.10 Which among the following compounds is the most reducing compound? (a) H_2S (b) HNO_2 (c) $SnCl_2$ (d) H_2SO_3 Ans. a 1.11 In which of the following complex, the oxidation number of Fe is +1? (a) $Fe_4[Fe(CN)_6]_3$ (b) $[Fe(H_2O)_5NO]SO_4$ (c) $[FeBr_4]^-$ (d) $[Fe(H_2O)_6]^{2-}$ Ans. b 1.12 Which among the following is the strongest oxidising agent? (a) H_2O_2 (b) O_3 (c) $K_2Cr_2O_7$ (d) $KMnO_4$ Ans. b 1.13 The oxidation states of P-atom in H₄P₂O₅, H₂P₂O₆ and H₂P₂O₇ are respectivelya) +3, +4, +5 b) +3, +5, +4 c) +5, +3, +4 d) +5, +4, +3 Ans. a 1.14 The oxidation states of Sulphur in Na₂S₂O₃ and H₂SO₅ area) +3, +5 b) +4, +6 c) +6, +6 d) +6, +5 Ans. c

1.15 The oxidation number of oxygen in O₂F₂, KO₂ and OF₂ are respectively-

a)
$$+1,-1/2,+2$$
 b) $+1,-1/2,+1/2$ c) $+1/2,-1/2,+2$ d) $+1,-1/2,+2/3$

Ans. a

PREPARED BY: MR. ARNAB PAUL CHOWDHURY