St．Lawrence High School
A Jesuit Christian Minority Institution
Term ：Pre－Test
Solution of Work Sheet－ 16
Class－X
Subject－Physical Science
Date－12．06．20

Chapter－Current Electricity
Topic－Oham＇s Law

Choose the correct option for the following questions．
$1 \times 15=15$

1．According to Ohm＇s law－
a．Current in a conductor is directly proportional to the resistance
b．Current in a conductor is directly proportional to the potential
c．Current in a conductor is directly proportional to the potential difference
d．Current in a conductor is inversely proportional to the potential difference
Ans：c．Current in a conductor is directly proportional to the potential difference
2．If a current of 5 A flows through a conductor from one end at potential of 13 volt to the other end at potential 5 volt，then the resistance of the conductor is－
a．$\frac{5}{8} \Omega$
b． 40Ω
c． 1.6Ω
d．None of these
Ans：c． 1.6Ω
3．If a conductor is heated to increase its temperature，then its resistance will－
a．Increase
b．Decrease
c．Remain same as resistance does not depend on temperature
d．First increase and then decrease
Ans：a．Increase
4．If the potential difference is increased，then to maintain the current constant－
a．Resistance of the conductor has to be increased
b．Resistance of the conductor has to be decreased
c．Resistance should be kept constant
d．The area of cross section of the conductor should be increased
Ans：a．Resistance of the conductor has to be increased
5．The resistance of a conducting slab depends on－
a．Length of the conductor
b．Area of cross section of the conductor
c．Nature of the conductor
d．All of these
Ans：d．All of these
6．Resistivity of a conducting slab depends on－
a．Length of the conductor
b．Area of cross section of the conductor
c．Nature of the conductor
d．All of these
Ans：c．Nature of the conductor
7. The SI unit of resistivity is -
a. $\Omega . m$
b. $\Omega . m^{-1}$
c. $\Omega^{-1} \cdot m$
d. $\Omega^{-1} \cdot m^{-1}$

Ans: a. Ω. m
8. The SI unit of conductivity is -
a. Ω. m
b. $\Omega . m^{-1}$
c. $\Omega^{-1} \cdot m$
d. $\Omega^{-1} \cdot m^{-1}$

Ans: d. $\Omega^{-1} \cdot m^{-1}$
9. When a conductor of resistance 40Ω is connected in between a potential difference, it is seen that the current through the conductor is $\frac{2}{5}$ ampere. The possible combination of potentials at the two ends of the conductor may be -
a. 10 volts , 2 volts
b. 15 volts, 8 volts
c. 20 volts, 16 volts
d. 19 volts, 3 volts

Ans: d. 19volts, 3volts
10. When a potential difference of 16 volts is applied across a conductor for 1 minute, it is seen that 6×10^{20} number of electrons has flowed in that time. What is the resistance of the conductor?
a. 1Ω
b. 1.6Ω
c. 5Ω
d. 10Ω

Ans: 10Ω
11. A solid cylindrical conducting rod is stretched and its length becomes n times of initial length. Its resistance will
a. Remain same
b. Become n times
c. Become $\frac{1}{n}$ times
d. n^{2} times.

Ans: d. n^{2} times.
12. The resistivity of a material is $\rho=\frac{A}{L} R$. If now, the length L is doubled and the area of cross section is made $\frac{1}{3}$ times (keeping temperature constant), then the resistivity will be -
a. $\frac{1}{6}$ times
b. 6 times
c. $\frac{2}{3}$ times
d. Will be unchanged

Ans: d. Will be unchanged
13. For the same set of voltage and current values, if the voltage versus current graph is plotted for two resistances 20Ω and 50Ω on the same graph paper (keeping temperature constant), then -
a. V-I graph for 20Ω will be steeper
b. V-I graph for 50Ω will be steeper
c. The slope of both the graphs will be same
d. Slope of one will be 5times that of the other one

Ans: b. V-I graph for 50Ω will be steeper
14. What amount of charge will flow through a conductor of resistance 17Ω during 5 minutes if the potentials at the two ends of the conductor are 100 volt and 49 volts?
a. 900 C
b. 100 C
c. 36 C
d. 15 C

Ans: a. 900 C
15. The conductivity of copper at $20^{\circ} \mathrm{C}$ is $6 \times 10^{7} \Omega^{-1} . \mathrm{m}^{-1}$. At this temperature, if a $42 \times 10^{4} \mathrm{~m}$ long copper wire has very small resistance as $7 \times 10^{-3} \Omega$, then the area of cross section of that copper wire is -
a. $36 \times 10^{14} \mathrm{~m}^{2}$
b. $10^{-8} \mathrm{~m}^{2}$
c. $1 \mathrm{~m}^{2}$
d. $1.5 m^{2}$

Ans: c. $1 m^{2}$

