

## **ST. LAWRENCE HIGH SCHOOL**



A Jesuit Christian Minority Institution

## WORKSHEET - 22

## **Topic – Logic Gates**

| Chapter: Boolean Algebra                                         | Date: 15/08/2020                 |
|------------------------------------------------------------------|----------------------------------|
| Chaosa the correct answer for each question.                     | [[ V 4 - 45]                     |
| <u>Choose the correct answer for each question.</u>              | $[5 \mathbf{X} \mathbf{I} = 15]$ |
| a) AND                                                           |                                  |
| b) OB                                                            |                                  |
| c) EXOR                                                          |                                  |
| d) NOR                                                           |                                  |
| 2. Which of the following gate will give a 0 when both of its in | nputs are 1?                     |
| a) AND                                                           |                                  |
| b) OR                                                            |                                  |
| c) NAND                                                          |                                  |
| d) EXOR                                                          |                                  |
| 3. The gate which is used to reverse the output obtained is _    |                                  |
| a) NOR                                                           |                                  |
| b) NAND                                                          |                                  |
| c) EXOR                                                          |                                  |
| d) NUI                                                           |                                  |
| 4. The output of an AND gate with three inputs, A, B, and C, E   | s high when                      |
| b) $A = 0$ $B = 1$ $C = 0$                                       |                                  |
| c) $A = 1, B = 1, C = 1$                                         |                                  |
| d) $A = 1, B = 0, C = 0$                                         |                                  |
| 5. Which of following are known as universal gates?              |                                  |
| a) NAND & NOR                                                    |                                  |
| b) AND & OR                                                      |                                  |
| c) XOR & OR                                                      |                                  |
| d) EX-NOR & XOR                                                  |                                  |
| 6. If a 3-input NOR gate has eight input possibilities, how man  | ny of those possibilities        |
| will result in a HIGH output?                                    |                                  |
| a) 1                                                             |                                  |
| b) 6                                                             |                                  |
| c) 7                                                             |                                  |
| d) 8                                                             |                                  |

7. The logic gate that will have HIGH or "1" at its output when any one of its inputs is HIGH is a/an ...... gate.

a) AND

- b) OR
- c) EXOR
- d) NOR
- 8. The output of a logic gate is 1 when all the input are at logic 0 as shown below:

| INF | TUT | OUTPUT |
|-----|-----|--------|
| А   | В   | С      |
| 0   | 0   | 1      |
| 0   | 1   | 0      |
| 1   | 0   | 0      |
| 1   | 1   | 0      |

| INP | UT | OUTPUT |
|-----|----|--------|
| А   | В  | С      |
| 0   | 0  | 1      |
| 0   | 1  | 0      |
| 1   | 0  | 0      |
| 1   | 1  | 1      |

The gate is either \_\_\_\_\_ a) A NAND or an EX-OR

b) An OR or an EX-NORc) An AND or an EX-ORd) A NOR or an EX-NOR

- How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB?
  - a) 3, 2
  - b) 4, 2
  - c) 1, 1
  - d) 2, 3

## 10. The NOR gate output will be high if the two inputs are \_\_\_\_\_

- a) 00
- b) 01
- c) 10
- d) 11
- 11. How many AND gates are required to realize Y = CD + EF + G?
  - a) 4
  - b) 5
  - c) 3
  - d) 2
- 12. Both OR and AND gates can have only two inputs:
  - a. True
  - b. False

13. The output will be a LOW for any case when one or more inputs are zero in a/an

a) AND

- b) OR
- c) EXOR
- d) NOR

14. How many two-input AND and OR gates are required to realize Y = CD+EF+G?

- a) 2*,* 2
- b) 2, 3
- c) 3, 3
- d) 3*,* 2

15. The boolean expression of an OR gate is \_\_\_\_\_

- a) A.B
- b) A'B+AB'
- c) A+B
- d) A'B'

Phalguni Pramanik