

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

STUDY MATERIAL-12

SUBJECT - STATISTICS

Pre-test

Chapter: THEORITICAL PROBABILITY DISTRIBUTION

Class: XII

Topic: BINOMIAL PROBABILITY DISTRIBUTION

Date: 24.06.20

PROBABILITY DISTRIBUTION

PART 6

1. If a person tosses an unbiased coin 2n times, then find the probability of getting number of heads as multiple of two.

Solution:

X : Number of heads appear in 2n tosses of an unbiased coin.

So
$$X \sim Bin (2n, \frac{1}{2})$$

$$(1+x)^{2n} = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{2n} x^{2n} \dots (1)$$

Where $c_r = 2n_{c_r}$. r = 1, 2, ..., 2n

Putting x = -1, in (1)

$$(1-1)^{2n} = c_0 - c_1 + c_2 - c_3 + \dots + c_{2n} \dots (2)$$

Putting x = +1, in (1)

$$(1+1)^{2n} = c_0 + c_1 + c_2 + c_3 + \dots + c_{2n} \dots (3)$$

Now, adding (2) and (3)

$$(2)^{2n} = 2\{c_0 + c_2 + c_4 + \dots + c_{2n}\}$$

Hence, P(X = multiple of 2) = {
$$c_0 + c_2 + c_4 + \dots + c_{2n}$$
} $(\frac{1}{2})^{2n}$
= $\frac{1}{2} 2^{2n} (\frac{1}{2})^{2n} = \frac{1}{2}$.

2. If a person tosses an unbiased coin 3n times, then find the probability of getting number of heads as multiple of three.

Solution:

X : Number of heads appear in 3n tosses of an unbiased coin.

So
$$X \sim Bin (3n, \frac{1}{2})$$

$$(1+x)^{3n} = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{3n} x^{3n} \quad \dots (1)$$

Where
$$c_r = 3n_{c_r}$$
 . $r = 1, 2, ..., 3n$

Putting x = +1, in (1)

$$(1+1)^{3n} = c$$

$$(2)^{3n} = c_0 + c_1 + c_2 + c_3 + \dots + c_{3n}$$
(2)

Putting x = w, in (1), where w = cube root of unity

$$(1+w)^{3n} = c_0 + c_1w + c_2w^2 + c_3w^3 + \dots + c_{3n}w^{3n}$$

$$\Rightarrow (1+w)^{3n} = c_0 + c_1w + c_2w^2 + c_3 + \dots + c_{3n} \qquad \dots (3)$$

Putting $x = w^2$, in (1), where w = cube root of unity

$$(1+w^2)^{3n} = c_0 + c_1 w^2 + c_2 w^4 + c_3 w^6 + \dots + c_{3n} w^{6n}$$

$$\Rightarrow (1+w^2)^{3n} = c_0 + c_1 w^2 + c_2 w^2 + c_3 + \dots + c_{3n} \dots \dots \dots \dots (4)$$

Now adding (2), (3) and (4) we get

$$(2)^{3n} + (1+w)^{3n} + (1+w^2)^{3n} = 3\{ c_0 + c_3 + c_6 + \dots + c_{3n} \}$$

....(5)

Now put
$$w = \frac{-1+i\sqrt{3}}{2} \Rightarrow w^2 = \frac{-1-i\sqrt{3}}{2}$$
 in (5)
Now L.H.S. in (5) = $(2)^{3n} + (1 + \frac{-1+i\sqrt{3}}{2})^{3n} + (1 + \frac{-1+i\sqrt{3}}{2})^{3n}$
= $(2)^{3n} + (\frac{-1}{2} + i\frac{\sqrt{3}}{2})^{3n} + (\frac{-1}{2} - i\frac{\sqrt{3}}{2})^{3n}$
= $(2)^{3n} + (\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})^{3n} + (\cos\frac{\pi}{3} - i\sin\frac{\pi}{3})^{3n}$
= $(2)^{3n} + (\cos\frac{3n\pi}{3} + i\sin\frac{3n\pi}{3}) + (\cos\frac{3n\pi}{3} + i\sin\frac{3n\pi}{3})$
(By De Moivre's theorem)
= $(2)^{3n} + 2\cos n\pi$
So the required probability = $\frac{(2^{3n} - 2)}{3} \frac{1}{2^{3n}}$ when n is odd
= $\frac{(2^{3n} + 2)}{3} \frac{1}{2^{3n}}$ when n is even.

3. If a person tosses an unbiased coin 4n times, then find the probability of getting number of heads as multiple of four.

Solution:

X: Number of heads appear in 4n tosses of an unbiased coin.

So
$$X \sim Bin (4n, \frac{1}{2})$$

 $(1+x)^{4n} = c_0 + c_1x + c_2x^2 + c_3x^3 + \dots + c_{4n}x^{4n}$ (1)
Where $c_r = 4n_{c_r}$. $r = 1, 2, \dots, 4n$
Putting $x = +1$, in (1)
 $(1+1)^{3n} = c$
 $(2)^{4n} = c_0 + c_1 + c_2 + c_3 + \dots + c_{4n}$ (2)
Putting $x = -1$, in (1),
 $(1-1)^{4n} = c_0 - c_1 + c_2 - c_3 + \dots + c_{4n}$ (3)
Putting $x = i$, in (1),
 $(1+i)^{4n} = c_0 + c_1i + c_2i^2 + c_3i^3 + \dots + c_{4n}i^{4n}$
 $\Rightarrow (1+i)^{4n} = c_0 + c_1i - c_2 - c_3i + \dots + c_{4n}i^{4n}$
Putting $x = -i$, in (1),
 $(1-i)^{4n} = c_0 - c_1i + c_2i^2 - c_3i^3 + \dots + c_{4n}i^{4n}$
 $\Rightarrow (1-i)^{4n} = c_0 - c_1i + c_2i^2 - c_3i^3 + \dots + c_{4n}i^{4n}$

$$(2)^{4n} + (1+i)^{4n} + (1-i)^{4n} = 4\{ c_0 + c_4 + c_4 + \dots + c_{4n} \}$$
.....(6)

Now adding (2), (3),(4) and (5) we get

Now the required probability

$$= \frac{1}{4} \left((2)^{4n} + (1+i)^{4n} + (1-i)^{4n} \right) \frac{1}{2^{4n}}$$

$$= \frac{1}{2^{2n+2}} \left(\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right)^{4n} + \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)^{4n} \right) + \frac{1}{4}$$

$$= \frac{1}{4} + \frac{1}{2^{2n+2}} \left((\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})^{4n} + (\cos \frac{\pi}{4} - i \sin \frac{\pi}{4})^{4n} \right)$$
(By De Moivre's theorem)

$$= \frac{1}{4} + \frac{1}{2^{2n+2}} 2 \cos n \pi$$

$$= \frac{1}{4} + \frac{1}{2^{2n+1}} \text{ when } n \text{ is even}$$

$$=\frac{1}{4}-\frac{1}{2^{2n+1}}$$
 when n is odd

Note: In case of a Bin(n, p) to find the probability that number of success is multiple of r(any positive integer), then we need to put x as rth roots of unity in the expansion of $(1 + x)^n$ and add them.

- 4. A random variable $X \sim bin(n, p)$
- i. Find the probability distribution that x throws are required to get the first success.
- ii. Find the probability distribution that x throws are required to get the m successes.

Solution:

$$X \sim bin(n, p)$$

So the pmf is given by

$$f(x) = n_{c_x} p^x (1-p)^{n-x}$$
, $x = 0(1)n$

i. Required probability distribution

$$f(x) = n_{c_{x-1}} p^{x-1} (1-p)^{n-x+1} p, x = 1(1)n$$
$$= n_{c_{x-1}} p^{x} (1-p)^{n-x+1}, x = 1(1)n$$

ii. Required probability distribution

$$f(x) = x - 1_{c_{m-1}} p^{m-1} (1-p)^{x-m} p$$
, $x = m(1)n$
= $x - 1_{c_{m-1}} p^m (1-p)^{x-m}$, $x = m(1)n$

Prepared by

Sanjay Bhattacharya