

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

Worksheet-8

SUBJECT – MATHEMATICS

Pre-test

Chapter: Continuity & Differentiability

Topic: Continuity & Differentiability

Choose the correct option

(1 X 15= 15)

Class: XII

Date: 13.06.2020

- 1. The function f(x) is continuous at x=0 if
 - a) $\lim_{x\to 0} f(x)$ exists.
 - b) f(0) is infinite.
 - c) $\lim_{x\to 0} f(x) = f(0)$
 - d) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x)$
- 2. The function f(x) = |x| is
 - a) Continuous at all real values of x
 - b) Discontinuous at x=0
 - c) Continuous only at x=0
 - d) None of these.

3. The greatest integer function f(x) = [x] is -

- a) Continuous at all real values of x
- b) Continuous only at non-integral values of x
- c) Continuous at all integral values of x
- d) None of these.

4. The function $f(x) = x^k$ is continuous at x = k, when -

a) $k \neq 0$, b) k < 0, c) $k \le 0$, d) $k \ge 0$

- 5. The point of discontinuities of the function $f(x) = \frac{x+2}{2x^2-x-1}$ are
 - a) $\frac{1}{2}$, -1 , b) $-\frac{1}{2}$, -1 , c) $-\frac{1}{2}$, 1 , d) $\frac{1}{2}$, 1

6. The function
$$f(x) = \frac{1}{\sin x - \cos x}$$
 is discontinuous at -

a) $n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$, b) $n\pi + (-1)^n \frac{\pi}{4}, n \in \mathbb{Z}$, c) $n\pi - \frac{\pi}{4}, n \in \mathbb{Z}$, d) $n\pi + \frac{3\pi}{4}, n \in \mathbb{Z}$

7. The function
$$f(x) = \begin{cases} \frac{|x-1|}{x-1}, & \text{when } x \neq 1 \\ 0, & \text{when } x = 1 \end{cases}$$

- a) Continuous at all real values of x
- b) Discontinuous at x=1
- c) Continuous only at x=1
- d) None of these.

8. Let f(x + y) = f(x) + f(y), $\forall x, y \in \mathbb{R}$. If f(x) is continuous at x=0, then f(x) -

- a) Continuous at all real values of x
- b) Discontinuous at x=1
- c) Continuous only at x=1
- d) None of these.

9. The function
$$f(x) = \begin{cases} 2x+1, & when \ x < 2 \\ k, & when \ x = 2 \\ 3x-1, & when \ x > 2 \end{cases}$$

Find the value of k for which $f(x)$ is continuous of

Find the value of k for which f(x) is continuous at x=2.

a) 5 , b) 0 , c) -2 , d) 3

- **10.** The function f(x) = |x + 1| *is*
 - a) Continuous at x = -1
 - **b)** Differentiable at x = 1
 - c) Differentiable at $x = \pm 1$
 - d) None of these.

11.Let the function f(x) = |x|. Then at x = 0 the function is –

- a) Not Continuous.
- b) Continuous but not differentiable
- c) Differentiable but not Continuous
- d) Differentiable and Continuous.

12. The function $f(x) = \begin{cases} x \sin \frac{1}{x} & when \ x \neq 1 \\ 0, & when \ x = 1 \end{cases}$ Then at x = 0 the function is –

- a) Not Continuous.
- b) Continuous but not differentiable
- c) Differentiable but not Continuous
- d) Differentiable and Continuous.

13. The function f(x) = x - [x], where [.] denotes the greatest integer function, is -

- a) Continuous everywhere.
- b) Continuous only at non-integral values of x.
- c) Continuous at all integral values of x.
- d) Differentiable everywhere.

14. The function $f(x) = 1 + |\cos x|$ is –

- a) Continuous no where
- b) Continuous everywhere
- c) Not differentiable at x=0
- d) Not differentiable at $x = n\pi$, $n \in \mathbb{Z}$.

15. The set of points where the function f(x) given by $f(x) = |x - 3| \cos x$ is differentiable, is –

- **a)** ℝ
- **b)** $\mathbb{R} \{3\}$
- **c)** (**0**,∞)
- d) None of these.

Prepared by :-SUKUMAR MANDAL (SkM).