ST. LAWRENCE HIGH SCHOOL

TOPIC - Theorems on Concurrence and Construction

Subject : Mathematics	Class-9	Second Term	F. M. 15
WORKSHEET NO. - 4	Solutions	Date: 16.11.2020	

Q.1) Choose the correct option:
(1x15=15)
i) G is the centroid of $\triangle \mathrm{ABC}$. If area of $\triangle \mathrm{GBC}$ is 12 sq. cm , then th area of $\triangle \mathrm{ABC}$ is
c) $36 \mathrm{sq} . \mathrm{cm}$
ii) If the length of circumradius of a right angled triangle is 5 cm , then the length of hypotenuse is b) 10 cm
iii) The length of the circumradius of the triangle having sides $9 \mathrm{~cm}, 12 \mathrm{~cm}$ and 15 cm is
d) 7.5 cm
iv) O is the circmcentre of the $\triangle A B C$. If $\angle B O C=100^{\circ}$, then measure of $\angle B A C$ is
a) 50°
v) In the $\triangle A B C, A D$ is a median and G is the centroid. If $A G=5 \mathrm{~cm}$, then measure of $G D$ is
d) 2.5 cm
vi) O is the incentre of $\triangle A B C$. If $\angle B A C=30^{\circ}$, then measure of $\angle B O C$ is
c) 105°
vii) In $\triangle A B C, \angle B$ is rt.angle. D is the midpoint of the side $A C$. If $A B=6 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$, then length of $B D$ is C) 5 cm
viii) G is the centroid of $\triangle A B C$. If $A G=8 \mathrm{~cm}$, then length of the median through A is
b) 12 cm
ix) G is the centroid of $\triangle A B C$, and if CF is a median, then CF : CG is
a) $3: 2$
$x)$ The incentre of a $\triangle A B C$ is 0 . If $\angle A B O=40^{\circ}$ and $\angle A C O=30^{\circ}$, then measure of $\angle B O C$ is
a) 110°
xi) In $\triangle A B C, O$ is the orthocenter. If $\angle B A C=70^{\circ}$, then measure of $\angle B O C$ is
a) 110°
xii) O is the orthocentre of $\triangle A B C$. If $\angle B O C=120^{\circ}$, then measure of $\angle A C O$ is
a) 30°
xiii) At least how many conditions are needed to construct a triangle?
b) 3
xiv) At least how many conditions are needed to construct a quadrilateral?
d) 5
xv) The point of intersection of the medians of a triangle is called \qquad
c) Centroid

