

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

Worksheet-26

SUBJECT - MATHEMATICS

2nd-term

Chapter: LPP Class: XII

Topic : LPP Date: 17.11.2020

Choose the correct option

 $(1 \times 15 = 15)$

Ouestion 1.

Feasible region in the set of points which satisfy

- (a) The objective functions
- (b) Some the given constraints
- (c) All of the given constraints
- (d) None of these

Question 2.

Of all the points of the feasible region for maximum or minimum of objective function the points

- (a) Inside the feasible region
- (b) At the boundary line of the feasible region
- (c) Vertex point of the boundary of the feasible region
- (d) None of these

Ouestion 3.

Objective function of a linear programming problem is

- (a) a constraint
- (b) function to be obtimized
- (c) A relation between the variables
- (d) None of these

A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of a L.P.P. is called its

- (a) Unbounded solution
- (b) Optimum solution
- (c) Feasible solution
- (d) None of these

Question 5.

The maximum value of the object function Z = 5x + 10 y subject to the constraints $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$, $x \ge 0$, $y \ge 0$ is

- (a) 300
- (b) 600
- (c) 400
- (d) 800

Question 6.

The maximum value of Z = 4x + 2y subject to the constraints $2x + 3y \le 18$, $x + y \ge 10$, $x, y \le 0$ is

- (a) 36
- (b) 40
- (c) 30
- (d) None of these

Ouestion 7.

In equation $3x - y \ge 3$ and 4x - 4y > 4

- (a) Have solution for positive x and y
- (b) Have no solution for positive x and y
- (c) Have solution for all x
- (d) Have solution for all y

Question 8.

The maximum value of Z = 3x + 4y subjected to contraints $x + y \le 40$, $x + 2y \le 60$, $x \ge 0$ and $y \ge 0$ is

- (a) 120
- (b) 140
- (c) 100
- (d) 160

Question 9.

Maximize Z = 11 x + 8y subject to $x \le 4$, $y \le 6$, $x + y \le 6$, $x \ge 0$, $y \ge 0$.

- (a) 44 at (4, 2)
- (b) 60 at (4, 2)
- (c) 62 at (4, 0)
- (d) 48 at (4, 2)

Question 10.

Maximize Z = 3x + 5y, subject to $x + 4y \le 24$, $3x + y \le 21$, $x + y \le 9$, $x \ge 0$, $y \ge 0$

- (a) 20 at (1, 0)
- (b) 30 at (0, 6)
- (c) 37 at (4, 5)
- (d) 33 at (6, 3)

Question 11.

Maximize Z = 4x + 6y, subject to $3x + 2y \le 12$, $x + y \ge 4$, $x, y \ge 0$

- (a) 16 at (4, 0)
- (b) 24 at (0, 4)
- (c) 24 at (6, 0)
- (d) 36 at (0, 6)

Question 12.

Maximize Z = 7x + 11y, subject to $3x + 5y \le 26$, $5x + 3y \le 30$, $x \ge 0$, $y \ge 0$

- (a) 59 at $(\frac{9}{2}, \frac{5}{2})$
- (b) 42 at (6, 0)
- (c) 49 at (7, 0)
- (d) 57.2 at (0, 5.2)

Question 13.

Maximize Z = 6x + 4y, subject to $x \le 2$, $x + y \le 3$, $-2x + y \le 1$, $x \ge 0$, $y \ge 0$

- (a) 12 at (2, 0)
- (b) $\frac{140}{3}$ at $(\frac{2}{3}, \frac{1}{3})$
- (c) 16 at (2, 1)
- (d) 4 at (0, 1)

Question 14.

Maximize Z = 10 x_1 + 25 x_2 , subject to $0 \le x_1 \le 3$, $0 \le x_2 \le 3$, $x_1 + x_2 \le 5$

- (a) 80 at (3, 2)
- (b) 75 at (0, 3)
- (c) 30 at (3, 0)
- (d) 95 at (2, 3)

Question 15.

 $Z = 20x_1 + 20_2$, subject to $x_1 \ge 0$, $x_2 \ge 0$, $x_1 + 2x_2 \ge 8$, $3x_1 + 2x_2 \ge 15$, $5x_1 + 2x_2 \ge 20$. The minimum value of Z occurs at

- (a) (8, 0)
- (b) $(\frac{5}{2}, \frac{15}{4})$
- (c) $(\frac{7}{2}, \frac{9}{4})$
- (d) (0, 10)

Prepared by:-

Mr. SUKUMAR MANDAL (SkM).