

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

WORKSHEET-25 SUBJECT – MATHEMATICS 2nd - Term

Chapter: Co-ordinate Geometry

Class: XI

Topic: Conic sections 1

Date: 28.11.2020

<u>(1 x 15=15)</u>

Choose the correct option

1 The vertex of the parabola $x^2 + 8x + 12y + 4 = 0$ is (a) (-4, 1)(b) (4, -1)(c) (-4, -1)(d)(4,1)2 The vertex of the parabola $(y-2)^2 = 16(x-1)$ is (a) (1, 2) (b) (-1, 2) (c) (1, -2)(d) (2, 1) 3 The length of the latus-rectum of the parabola $4y^2 + 2x - 20y + 17 = 0$ is (b) 6 (a) 3 (c) 1/2(d) 9 4 The length of the latus-rectum of the parabola $x^2 - 4x - 8y + 12 = 0$ is (a) 4 (b) 6 (c) 8 (d) 10 5 The focus of the parabola $y = 2x^2 + x$ is (b) (1/2,1/4) (a) (0, 0) (c) (-1/4, 0)(d) (-1/4, 1/8)6 Which of the following points lie on the parabola $x^2 = 4ay$? (a) $x = at^2$, y = 2at (b) x = 2at, $y = at^2$ (c) $x = 2at^2$, y = at (d) x = 2at, $y = at^2$ 7 The equation of the parabola whose focus is (1, -1) and the directrix is x + y + 7 = 0 is (a) $x^2 + y^2 - 2xy - 18x - 10y = 0$ (b) $x^2 - 18x - 10y - 45 = 0$ (d) $x^2 + y^2 - 2xy - 18x - 10y - 45 = 0$ (c) $x^2 + y^2 - 18x - 10y - 45 = 0$ ⁸ The parametric equations of a parabola is $x = t^2 + 1$, y = 2t + 1, the Cartesian equation of its directrix is -(a) x = 0(b) x = -1(c) y = 0(d) none of these. 9 If V and S are respectively the vertex and focus of the parabola $y^2 + 6y + 2x + 5 = 0$, then SV = ? (a) 2 (b) ½ (b) 1 (d) none of these

10. The directrix of the parabola $x^2 - 4x - 8y + 12 = 0$ is				
	(a) $y = 0$	(b) $x = 1$	(c) $y = -1$	(d) $x = -1$
11.	The equation of the parabola with focus (0, 0) and (a) $x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$ (c) $x^2 + y^2 + 8x + 8y - 16 = 0$		d directrix $x + y = 4$ is (b) $x^2 + y^2 - 2xy + 8x + 8y = 0$ (d) $x^2 - y^2 + 8x + 8y - 16 = 0$	
12.	The line $2x - y + 4 = 0$ cuts the parabola $y^2 = 8x$ in <i>P</i> and <i>Q</i> . The mid-point of <i>PQ</i> is (a) $(1, 2)$ (b) $(1, -2)$ (c) $(-1, 2)$ (d) $(-1, -2)$			
		(b) (1, – 2)		(d) (-1, -2)
13.	3. In the parabola $y^2 = 4 ax$, the length of the chord passing through the vertex and inclined to the axis at $\pi/4$ is			
	(a) $4\sqrt{2} a$		(c) $\sqrt{2} a$	(d) none of these
14.	. The equation $16x^2 + y^2 + 8xy - 74x - 78y + 212 = 0$ represents			
	(a) a circle	(b) a parabola	(c) an ellipse	(d) a hyperbola
15.	The length of the latus-rectum of the parabola $y^2 + 8x - 2y + 17 = 0$ is			
	(a) 2	(b) 4	(c) 8	(d) 16

Prepared by :-

Mr. Sukumar Mandal (SkM)