A JESUIT CHRISTIAN MINORITY INSTITUTION

1. Check whether following fractions are equivalent or not:
a) $\frac{4}{7}, \frac{3}{10}$

We cross multiply $\frac{4}{7}$ and $\frac{3}{10}$

$$
=\frac{4 \times 10}{7 \times 3}=\frac{40}{21}
$$

Since, the products are not same, $\frac{4}{7}$ and $\frac{3}{10}$ are not equivalent.
b) $\frac{2}{5}, \frac{6}{15}$

We cross multiply $\frac{2}{5}$ and $\frac{6}{15}$

$$
=\frac{2 \times 15}{5 \times 6}=\frac{30}{30}
$$

Since, the products are same, $\frac{2}{5}$ and $\frac{6}{15}$ are equivalent.
2. Compare the pair of fractions by cross multiplication.
a) $\frac{5}{7}, \frac{4}{13}$
$\frac{5}{7} \times \frac{4}{13}$
$5 \times 13=65$
$7 \times 4=28$
Since, $65>28$
So, $\frac{5}{7}>\frac{4}{13}$
b) $\frac{7}{18}, \frac{6}{14}$
$\frac{7}{18} \times \frac{6}{14}$
$7 \times 14=98$
$18 \times 6=108$
Since, $98<108$
So, $\frac{7}{18}<\frac{6}{14}$
3. Find the greatest and the smallest fractions.

When numerators are equal, the fraction with smaller denominator is greater and the fraction with greater denominator is smaller.
a) $\frac{8}{17}, \frac{8}{13}, \frac{8}{21}, \frac{8}{9}$

Ans. Greatest fraction $-\frac{8}{9}$
Smallest fraction $-\frac{8}{21}$
b) $\frac{6}{15}, \frac{8}{15}, \frac{11}{15}, \frac{13}{15}$

Ans. Greatest fraction $-\frac{6}{15}$
Smallest fraction - $\frac{13}{15}$
4. Convert to like fractions and compare.
a) $\frac{6}{7} \square \frac{5}{8}$
L. C. M. of 7 and 8 is 56
$\frac{6}{7}=\frac{6 \times 8}{7 \times 8}=\frac{48}{56}$
$\frac{5}{8}=\frac{5 \times 7}{8 \times 7}=\frac{35}{56}$
Since, $48>35$
So, $\frac{48}{56}>\frac{35}{56}$
$=\frac{6}{7}>\frac{5}{8}$
Ans. $\frac{6}{7} \triangle \frac{5}{8}$
b) $\frac{4}{6} \square \frac{7}{9}$
L. C. M. of 6 and 9 is 54
$\frac{4}{6}=\frac{4 \times 9}{6 \times 9}=\frac{36}{54}$
$\frac{7}{9}=\frac{7 \times 6}{9 \times 6}=\frac{42}{54}$
Since, $36<42$
So, $\frac{36}{54}<\frac{42}{54}$

$$
=\frac{4}{6}<\frac{7}{9}
$$

Ans. $\frac{4}{6}<\frac{7}{9}$
5. Write equivalent fractions of $\frac{12}{20}$ with a) Denominator 5
b) Numerator 24
a) Denominator 5

$$
\frac{12}{20}=\frac{12 \div 4}{20 \div 4}=\frac{3}{5}
$$

Thus, $\frac{3}{5}$ is the required fraction.
b) Numerator 24

$$
\frac{12}{20}=\frac{12 \times 2}{20 \times 2}=\frac{24}{40}
$$

Thus, $\frac{24}{40}$ is the required fraction.
6. Express the following improper fraction as mixed numbers:
a) $\frac{18}{5}$

$$
\begin{array}{r}
3 \\
5 \longdiv { 1 8 } \\
15 \\
\hline
\end{array}
$$

Ans. $3 \frac{3}{5}$
b) $\frac{23}{4}$

$$
\begin{array}{r}
5 \\
4 \longdiv { 2 3 } \\
\frac{20}{3}
\end{array}
$$

Ans. $5 \frac{3}{4}$
7. Express the following mixed numbers as improper fraction:
a) $7 \frac{2}{3}$
$7 \frac{2}{3}=\frac{(3 \times 7)+2}{3}=\frac{21+2}{3}=\frac{23}{3}$
Ans. $\frac{23}{3}$
b) $9 \frac{4}{5}$
$9 \frac{4}{5}=\frac{(5 \times 9)+4}{5}=\frac{45+4}{5}=\frac{49}{5}$
Ans. $\frac{49}{5}$
8. Reduce the following fractions into their lowest forms.
a) $\frac{55}{99}$
H. C. F. of 55 and 99 is 11
$\frac{55}{99}=\frac{55 \div 11}{99 \div 11}=\frac{5}{9}$
Hence, $\frac{\mathbf{5}}{\mathbf{9}}$ is the lowest form of $\frac{55}{99}$
b) $\frac{15}{48}$
H. C. F. of 15 and 48 is 3
$\frac{15}{48}=\frac{15 \div 3}{48 \div 3}=\frac{5}{16}$
Hence, $\frac{5}{16}$ is the lowest form of $\frac{15}{48}$
9. Add and reduce to the lowest forms.
a) $\frac{4}{7}+\frac{2}{8}$
$=\frac{4 \times 8}{7 \times 8}+\frac{2 \times 7}{8 \times 7}$
$=\frac{32}{56}+\frac{14}{56}$
$=\frac{32+14}{56}$
$=\frac{46}{56}$
H. C. F. of 46 and 56 is 2
$\frac{46}{56}=\frac{46 \div 2}{56 \div 2}=\frac{23}{28}$
Hence, $\frac{23}{28}$ is the lowest form of $\frac{46}{56}$
b) $\frac{4}{9}+\frac{2}{6}$
$=\frac{4 \times 6}{9 \times 6}+\frac{2 \times 9}{6 \times 9}$
$=\frac{24}{54}+\frac{18}{54}$
$=\frac{24+18}{54}$
$=\frac{42}{54}$
H. C. F. of 42 and 54 is 6
$\frac{42}{54}=\frac{42 \div 6}{54 \div 6}=\frac{7}{9}$
Hence, $\frac{7}{9}$ is the lowest form of $\frac{42}{54}$
10.
a) Sam bought $2 \frac{1}{2} \mathrm{~kg}$ of sugar from one shop and $6 \frac{2}{3} \mathrm{~kg}$ of sugar from the other shop. How much sugar did he buy in all? Quantity of sugar bought from one shop

Quantity of sugar bought from the other shop
\therefore Total quantity of sugar he bought in all

$$
\begin{aligned}
& 2 \frac{1}{2} \mathrm{~kg} \\
& 6 \frac{2}{3} \mathrm{~kg} \\
& 2 \frac{1}{2}+6 \frac{2}{3} \\
& =\frac{2 \times 2+1}{2}+\frac{3 \times 6+2}{3} \\
& =\frac{5}{2}+\frac{20}{3} \\
& =\frac{5 \times 3}{2 \times 3}+\frac{20 \times 2}{3 \times 2} \\
& =\frac{15}{6}+\frac{40}{6} \\
& =\frac{15+40}{6} \\
& =\frac{55}{6} \\
& =9 \frac{1}{6}
\end{aligned}
$$

Ans. Sam bought $9 \frac{1}{6} \mathrm{~kg}$ of sugar in all.
b) Ron walked $3 \frac{3}{4} \mathrm{~km}$ on Monday, $4 \frac{1}{3} \mathrm{~km}$ on Tuesday. What distance did he walk in all?
Distance Ron walked on Monday
Distance he walked on Tuesday
\therefore Total distance Ron walked in all

$$
\begin{aligned}
& 3 \frac{3}{4} \mathrm{~km} \\
& 4 \frac{1}{3} \mathrm{~km} \\
& 3 \frac{3}{4}+4 \frac{1}{3} \\
& =\frac{4 \times 3+3}{4}+\frac{3 \times 4+1}{3} \\
& =\frac{15}{4}+\frac{13}{3} \\
& =\frac{15 \times 3}{4 \times 3}+\frac{13 \times 4}{3 \times 4} \\
& =\frac{45}{12}+\frac{52}{12} \\
& =\frac{45+52}{12} \\
& =\frac{97}{12} \\
& =8 \frac{1}{12}
\end{aligned}
$$

Ans. Ron walked $\mathbf{8} \frac{\mathbf{1}}{\mathbf{1 2}} \mathbf{k m}$ in all.

