FO	R GOD AND COUNTR	St. Lawrence High School A Jesuit Christian Minority Institution <u>Term :</u> Test Work Sheet – 5				
	Class – X	s – X Subject – Physical Science				Date – 28.11.20
	Chapter –Revision(Behavior of gas, Thermal Phenomena)					
Choose	e the correct option for th	e following questions.				1 × 15 = 15
1.	The product of pressure and volume of 224lit of CO_2 gas at STP will be (R = N				(R = Molar gas c	constant)
	a. 224R	b. 10R	C.	273 R	d. 273	OR
2.	2. The pressure on certain mass of an ideal gas is doubled keeping its volume constant. If the initial temperature of the gas was 0°C, then its final temperature is					
	a. 0°C	b. 273 <i>K</i>	c.	546 K	d. Nor	ne of these
3.	 According to the kinetic theory of the ideal gas a. Mass of the gas molecules can be neglected b. Volume of the gas molecules can be neglected c. Both volume and mass can be neglected d. None of these 					
4.	In Celsius scale, the ten a. 7°C	nperature corresponds t b. 17°C	o 280K is	c. 80°(2	d. 20°C
5.	In how many gram of o a. 320g	xygen gas the number o b. 32g	f oxygen m	olecules will c. 16g	be 6.023×10^{24}	d. 64g
6. The equation of state of 3.2g of oxygen gas will be –						
	1) $PV = 2.24RT$	2) $PV = RT$	3) 10PV =	RT	4) PV = 10RT	
7.	The increase in length in case of thermal expansion does not depend ona) Initial lengthb) increase in temperaturec) nature of materiald) measuring unit of temperature					
8.	If $\alpha: \beta: \gamma = 1: 2: 3$ then which relation is correct? a) $\frac{\alpha}{3} = \frac{\beta}{2} = \gamma$ b) $\alpha: \beta: \gamma = 1: \frac{1}{2}: \frac{1}{3}$ c) $3\alpha = 2\beta$ d) $3\beta = 2\gamma$					
9.	Value of coefficient of a)The initial volume c)nature of the mater	f coefficient of volume expansion i.e. γ , depends on – e initial volume b) change in temperature ture of the material d) all of these				
10.	The apparent expansiona. Always greater thatc. Always equal to rea	ent. b.	b. Always less than real expansion coefficient.d. Always lesser than expansion coefficient of container			

- 11. The expansion coefficients of different liquids are different because
 - a. different liquids posses different intermolecular force of attraction
 - b. different liquids have different initial volume
 - c. different liquids have different free surface areas
 - d. none of these
- 12. For all ideal gasses at constant pressure
 - 1. γ is different for different gas
 - 3. γ is same for all the gas

2. γ depends on the nature of gas container

- 4. γ is a fraction greater than one?.
- 13. For thermal expansion of gas, we generally ignore the expansion of gas container, because
 - a. γ of container is much greater than that of the gas contained
 - b. γ of gas contained is much greater than that of the container
 - c. γ of gas contained is equal to that of the container
 - d. Gas molecules do not exert any force on each other.
- 14. Amount of flow of heat depends upon
 - a. Nature of the conductor
 - b. Temperature difference between two ends of conductor
 - c. The length and are of cross section of the conducting material
 - d. All of the above
- 15. Thermal resistivity of a conducting slab
 - a. Increases if area of cross section increases
 - b. Increases if length increases
 - c. Decreases if length increases
 - d. Does not depend on length and area of cross section

Name of the teacher – Soumitra Maity