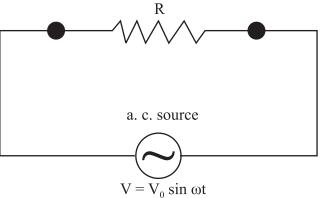


ST. LAWRENCE HIGH SCHOOL

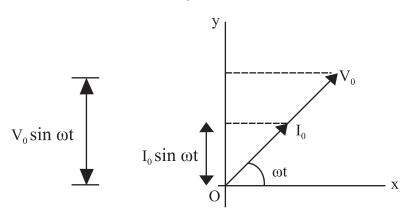
A JESUIT CHRISTIAN MINORITY INSTITUTION

STUDY MATERIAL: 8 (Part - 1)

Subject : PHYSICS Topic : Alternating current

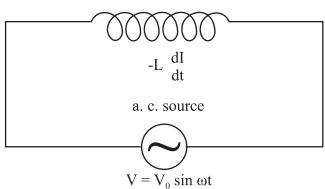

CLASS: XII Date: 01.08.2020

A: Various components across a.c. supply


Sl. No.	Alternating voltage	Alternating current	Phase relationship between voltage and current	Impedance	Average Power Loss
1.	Pure resistance $V = V_o \sin \omega t$	$I = I_0 \sin \omega t$	In phase	Z = R	$I^2_{ms} R$
2.	Pure inductance $V = V_o \sin \omega t$	$I = I_0 \sin (\omega t - 90^\circ)$	Current lags by 90°	$Z = X_L = \omega L = 2\pi v L$	nil
3.	Pure capacitance $V = V_o \sin \omega t$	$I = I_0 \sin(\omega t + 90^0)$	Current leads by 90°	$Z = X_C = \frac{1}{\omega C} = \frac{1}{2\pi vC}$	nil
4.	Series resistance and Pure inductance $V = V_o \sin \omega t$	$I = I_0 \sin(\omega t - \Phi)$	Current lags by Φ	$Z = \sqrt{R^2 + X_L^2}$	$ m V_{rms}~I_{rGOS}~\Phi$
5.	Series resistance and Pure capacitance $V = V_o \sin \omega t$	$I = I_0 \sin(\omega t + \Phi)$	Current leads by Φ	$Z = \sqrt{R^2 + X_C^2}$	V _{rms} I _{rm} cos Φ
6.	Series resistance inductance and capacitance (i)Predominantly inductive $V = V_o \sin \omega t$ (ii) Predominantly capacitive $V = V_o \sin \omega t$	$I = I_0 \sin (\omega t - \Phi')$ $I = I_0 \sin (\omega t + \Phi')$	Current lags by Φ' Current leads by Φ'	$Z = \sqrt{R^2 + (X_L - X_C)^2}$ $Z = \sqrt{R^2 + (X_C - X_L)^2}$	

B. GRAPHS AND CIRCUIT DIAGRAMS

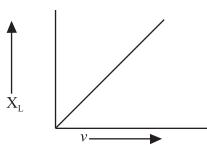
B-1. An A. C. source connected to a resistor of resistance R is shown in figure. Such a circuit is known as a resistive circuit.



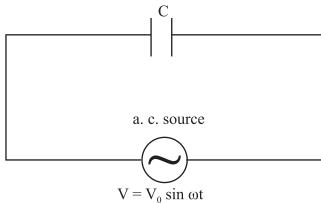
B 2. Phasor diagram for pure resistive circuit is shown in figer

This diagram shows that the phase difference between I and V is zero

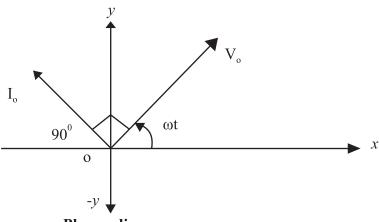
B 3. An alternating source is shown connected to an ideal inductor of inductance L in figure. Such a circuit is known as purely *inductive circuit*.



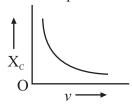
B 4.



The phasor diagram for purely inductive circuit is shown in figure


B 5. X_L versus v diagram of a purely inductive circuit is shown figure shows that X_L increases linearly with the increase in the frequency of the current.

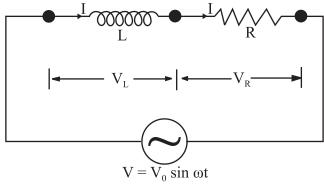
B 6. Alternating source connected to a capacitor is shown in Figure. Such a circuit is known as purely capacitive circuit. The capacitor is periodically charged and discharged when alternating voltage is applied to it.

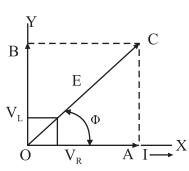


B 7.

Phasor diagram

B 8. Comparing $I_0 = \frac{V_0}{(I/C\omega)}$ with $I_0 = \frac{V_0}{R}$, we conclude that $\left(\frac{I}{C\omega}\right)$ has the dimension of resistance. The term (I /C ω) is known as Capacitive reactance (X_c)




Consider an a.c. source of e.m.f. E (r.m.s. value) connected to a series combination of an inductor of pure inductance L. and a resistor of resistance R as shown in Figure.

Let I be the r.m.s. value of current flowing through the circuit.

The potential difference across the inductor is given by. $V_L = IX_L$

Voltage V_L leads the current I by an angle of $\pi/2$ when a.c. flows through the inductor. In figure V_L is represented by OB along Y-axis and current I along X-axis

(to be continued)

Ambarnath Baneriee