ST. LAWRENCE HIGH SCHOOL
A Jesuit Christian minority Institution
Subject: Mathematics
Class-XDate:6/03/2021
Topic: Theorems related to circle Answer key of Worksheet13

1. Choose the correct alternative.

$$
1 \times 15=15
$$

a) The circles having same Centre are known as i) equivalent circle ii) concentric circle iii) semicircle iv) none of these
b) The straight line drawn from the centre and perpendicular to a chord divides the chord in \qquad ratio.
i)1:1 \quad ii)2:1 \quad iii)1:2 \quad iv) none of these
c)The length of a chord of a circle with radius 13 cm is 10 cm . The distance of the chord from the centre is \qquad .
i) $\mathbf{1 2 . 5} \mathbf{~ c m}$
ii) 24 cmiii) 12 cm
iv) none of these
d) $A B$ and $C D$ are two equal chords with centreo.If angle $A O B=60^{\circ}$ and $C D=6 \mathrm{~cm}$, then length of $O C$ is i) $\mathbf{3 ~ c m} \quad$ ii) $4 \mathbf{c m} \quad$ iii) $5 \mathbf{~ c m} \quad$ iv) $\mathbf{6 c m}$
$e) P$ is a point inside the circle with centre 0 . If the radius of the circle is 10 cm and if $O P=6 \mathrm{~cm}$ then the least length of the chord passing through P is
i) $\mathbf{8 ~ c m}$
ii) 16 cm
iii) $12 \mathbf{~ c m ~ i v) ~ n o n e ~ o f ~ t h e s e ~}$
f) P and R are the centres of 2 circles which intersect each other at A and B. If a straight line through A and parallel to $P R$ cuts the circles at C and D respectively, then find length of $C D$, if $P R=10 \mathrm{~cm}$.
i) 20 cm
ii) $\mathbf{1 5 ~ c m}$
iii) 18 cm
iv) 12 cm
g)The length of the perpendicular drawn from the centre 0 to a chord $A B$ of length 16 cm of a circle is 6 cm . Then the length of the chord $C D$ at a distance 8 cm from the centre is i) 20 cm ii) $12 \mathrm{~cm} \quad$ iii) $15 \mathrm{~cm} \quad$ iv) 18 cm
h) $\mathbf{2}$ diameters of a circle can never be \qquad
i) intersecting ii) perpendicular 1 ii) parallel iv) none of these
i) Two parallel chords of lengths 16 cm and 12 cm respectively are on the same side of the circle of radius 10 cm Find the distance between 2 chords .
i) $\mathbf{8 ~ c m}$
ii) $\mathbf{6 ~ c m}$
iii) 5 cm
iv) 2 cm
j) The length of 2 parallel chords of a circle of radius 15 cm are 24 cm and 18 cm . Find the distance between the chords when they are on the opposite sides.
i) $\mathbf{2 1 ~ c m}$
ii) $\mathbf{3 ~ c m}$
iii) 15 cm
iv) $\mathbf{1 7} \mathbf{~ c m}$
k) 2 circles ,each of radius 10 cm , intersect each other at 2 points P and Q. If $P Q=12 \mathrm{~cm}$ and if A and B are the centres of the 2 circles, then the distance $\begin{array}{lllll}\text { between the centres is } & \text { i) } 8 \mathrm{~cm} & \text { ii) } 16 \mathrm{~cm} & \text { iii) } 20 \mathrm{~cm} & \text { iv) } 15 \mathrm{~cm}\end{array}$
1)If all the vertices of a quadrilateral lie on the circumference of a circle, then quadrilateral is known as i) square i i) rectangle $i i i)$ rhombus iv) cyclic quadrilateral
$\mathrm{m}) \mathrm{AB}$ and CD are 2 equal chords of a circle with centre 0 . If angle $A O B=80^{\circ}$,then angle $C O D=\ldots$ i) $90^{\circ} \quad$ ii) 100° iii) 80° iv) 60°
n)If M is the mid point of the chord $A B$ of a circle with centre 0 , then $O M$ is $\ldots \ldots$ ___ $A B$. i) parallel ii) adjacent i ii) perpendicular iv) none of these
o) $A B$ and $C D$ are 2 chords of a circle.They intersect each other at P.If $\mathrm{AP}=\mathrm{CP}$ then $\mathrm{AB}: C D=$ \qquad i) $1: 1$
ii)2:1 iii)1:2 iv) none of these

