

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

WORK SHEET 14

Subject : PHYSICS

CLASS : XII

Topic : Drift velocity, mobility, I=neAv_d, ohm's law from drift velocity, vector form of ohm's law

Multiple Choice Question :

Chapter : Current Electricity

- 1. In a metallic conductor, the number of free electrons per unit volume is n and the drift velocity of those electrons is v_{d} . Then
 - a) $v_d \propto n$ b) $v_d \propto \frac{1}{n}$ c) $v_d \propto n^2$ d) $v_d \propto \frac{1}{n^2}$

2. When a current of 1 A flows through a copper wire of cross sectional area 1 mm², the drift velocity of free electrons becomes v. What will be the drift velocity of free electrons when the same current flows through a copper wire of cross sectional area 2 mm²?

(a) $\frac{v}{2}$ (b) v (c) 2v (d) 4v

- 3. Two copper wires have a ratio of 1 : 4 between their diameters. If the same current passes through both of them, the drift volocity of the electrons will be in the ratio of
 - (a) 16:1 (b) 4:1 (c) 1:4 (d) 1:16

4. Unit of electron mobility is

- (a) $m^2 \text{ volt}^{-1} \text{ S}^{-1}$ (b) $m^2 \text{.volt.S}$ (c) $m^{-2} \text{. volt.S}$ (d) $m^2 \text{ volt}^{-1} \text{ S}^{-1}$
- 5. The electric field in a copper wire of area of cross section 2 mm² carrying 2A current is : (given resistivity of copper 1.7 x $10^{-8} \Omega$ m).
 - (a) 8.0 x 10^{-2} Vm⁻¹ (b) 8.5 x 10^{-2} Vm⁻¹ (c) 8.5 x 10^{-3} Vm⁻¹ (d) 8.0 x 10^{-4} Vm⁻¹
- 6. Let drift velocity in a conductor be 10^{-4} m/s under an electric field of 50 Vm⁻¹. The electron mobility is
 - (a) $0.2 \times 10^{-5} m^2.volt^{-1}$. S⁻¹
 - (b) 20 x $10^{-5} m^2$.volt⁻¹. S⁻¹
 - (c) 200 x $10^{-5} m^2$.volt . S
 - (d) 0.5 x $10^{-6} m^2$.volt . S
- 7. What is the relationship between electric field intensity E, current density J and specific resistance ρ ?
 - (a) $J = \frac{1}{\rho}E$ (b) $J = \rho E$ (c) $E = \frac{\rho}{J}$ (d) $\rho = JE$
- 8. A beam of electrons moving at a speed of 10^6 m/s along a line produces a current of 1.6 x 10^{-6} A. The number of electrons in the 1 *metre* of the beam is
 - (a) 10^6 (b) 10^7 (c) 10^{13} (d) 10^{15}

 $1 \times 15 = 15$

12.6.20

- 9. A potential difference V exists between the ends of a metal wire of length *l*. The drift velocity will be doubled if
 - (a) V is doubled
 - (b) l is doubled
 - (c) the diameter of the wire is doubled
 - (d) the temperature of the wire is doubled
- 10. A wire has a non-uniform cross-sectional area as shown in figure. A steady current i flows through it. Which one of the following statement is corrent
 - (a) the drift speed of electron is constant
 - (b) the drift speed increases on moving from A to B.
 - (c) the drift speed decreases on moving from A to B
 - (d) the drift speed varies randomly.

- (a) 2i (b) i (c) i/2 (d) 1/4
- 12. A potential difference of V is applied at the ends of a copper wire of length l and diameter d. On doubling only d, drift velocity
 - (a) becomes two times
 - (b) becomes half
 - (c) becomes four times
 - (d) becomes one fourth
- 13. A current flows in a wire of circular cross-section with the free electrons travelling with a mean drift velocity v. If an equal current flows in a wire of twice the radius new mean drift velocity is

3

- (a) v (b) $\frac{v}{2}$ (c) $\frac{v}{4}$ (d) none of these.
- 14. Vector form of ohm's law is
 - (a) $\vec{j} = \sigma \cdot \vec{E}$ (b) $\vec{j} = \frac{\sigma}{\vec{E}}$ (c) $\sigma = \vec{j} \cdot \vec{E}$ (d) $V = I \cdot R$
- 15. In a metallic conductor
 - (a) velocity of electric current is much greater than the drift velocity of free electrons
 - (b) drift velocity is greater than velocity of electric current
 - (c) both the velocities are equal
 - (d) none of the above

Ambarnath Banerjee

