

St. Lawrence High School A Jesuit Christian Minority Institution Term – 1st Work Sheet No - 2

Class – X Topic – Thermal Phenomena

d) °C^{−1}

Date – 26.02.21 Subject – Physical Science

1. The increase in length in case of thermal expansion does not depend on			
a) Initial length	b) increase in temperature		
c) nature of material	d) measuring unit of temperature		

2. The value of α of a metal is given as $1.6 \times 10^{-6} K^{-1}$ in SI unit. In C.G.S system, α will be –

c) °C

a)	More	b) less	c) equal	d) $\frac{1}{273}$ times
----	------	---------	----------	--------------------------

3. The C.G.S unit of β is – a) /K b) K^{-1}

4.	Value of coefficient of volume expansion i.e. γ , depends on –		
	a)The initial volume	b) change in temperature	
	c)nature of the material	d) all of these	

5. If $\alpha: \beta: \gamma = 1: 2: 3$ then which relation is correct? a) $\frac{\alpha}{3} = \frac{\beta}{2} = \gamma$ b) $\alpha: \beta: \gamma = 1: \frac{1}{2}: \frac{1}{3}$ c) $3\alpha = 2\beta$ d) $3\beta = 2\gamma$

6. The C.G.S unit of coefficient of volume expansion of gas is – a. J/K b. $cm/^{\circ}$ C c. $^{\circ}$ C d. $^{\circ}$ C⁻¹

- 7. The SI unit of real expansion coefficient of liquid is a. K^{-1} b. K c. °C d. °C⁻¹
- 8. The apparent expansion coefficient of liquid is –
 a. Always greater than real expansion coefficient.
 b. Always less than real expansion coefficient.
 - c. Always equal to real expansion coefficient d. Always lesser than expansion coefficient of container

9. If

 γ_a = Apparent expansion coefficient of liquid, γ_r = Real expansion coefficient of liquid and γ_c = *volume* expansion coefficient of the container, then γ_a =

- a. $\gamma_r \gamma_c$ b. $\gamma_r + \gamma_c$ c. $\gamma_c \gamma_r$ d. $\frac{\gamma_r \times \gamma_c}{\gamma_r + \gamma_c}$
- 10. In case of liquid the change of volume depends on
 - a. Initial volume b. change of temperature. c. nature of liquid d. All of these

11. A liquid can have

- a. All three types of expansion coefficients
- c. only volume expansion coefficient
- 12. Real expansion coefficient will be
 - a. Always greater than apparent expansion coefficient
 - b. Always equal to apparent expansion coefficient
- b. only superficial expansion coefficient
- d. only linear expansion coefficient
- b. always lesser than apparent expansion coefficient
- d. equal to expansion coefficient of container
- 13. The expansion coefficients of different liquids are different because
 - a. different liquids posses different intermolecular force of attraction
 - b. different liquids have different initial volume
 - c. different liquids have different free surface areas
 - d. none of these
- 14. The real expansion coefficient of liquid depends on –a. Initial volumeb. change of volumec. change of temperatured. nature of liquid
- 15. Apparent expansion of liquid depends on
 - a. Expansion coefficient of container
 - c. change in temperature

b. initial volume of liquidd. all of these

Name of the teacher - Soumitra Maity