

St. Lawrence High School

A Jesuit Christian Minority Institution

Work Sheet - 4

Subject - Physical Science

Class-X

Chapter – Thermal Phenomena

Topic – Conduction of heat

Date - 15.04.20

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. Heat energy always flows from
 - a. Higher temperature region to lower temperature region
 - b. lower temperature region to higher temperature region
 - c. Higher heat region to lower heat region
 - d. lower heat region to higher heat region.
- 2. During conduction
 - a. Molecules of conducting material move from one end to the other end of conductor
 - b. Molecules remain absolutely static
 - c. Molecules vibrate about their mean position
 - d. None of these
- 3. Amount of flow of heat depends upon
 - a. Nature of the conductor
 - b. Temperature difference between two ends of conductor
 - c. The length and are of cross section of the conducting material
 - d. All of the above
- 4. The rate of flow of heat depends upon
 - a. Length and area of cross section of the conducting material
 - b. Temperature difference between two ends of conductor
 - c. Conductivity of the material
 - d. All of these
- 5. The conductivity of any conductor depends on
 - a. length and area of cross section of the conducting material
 - b. Temperature difference between two ends of conductor
 - c. The time duration of flow of heat
 - d. None of these
- 6. The C.G.S unit of heat is
 - a. Joule
 - b. Cal
 - c. Watt
 - d. Erg
- 7. The SI unit of heat is
 - a. Joule
 - b. Cal
 - c. Watt
 - d. Erg
- 8. The C.G.S unit of thermal conductivity of conductor is
 - a. $J/cm {}^{\circ}C sec$
 - b. $I/m {}^{\circ}C sec$
 - c. I/m K sec

- d. $Cal/cm {}^{\circ}C sec$
- 9. The SI unit of thermal conductivity of conductor is
 - a. Watt/m K
 - b. $I/m {}^{\circ}C sec$
 - c. J/m K sec
 - d. Both a. and c.
- 10. Thermal resistivity is the
 - a. Thermal resistance offered by a conductor
 - b. Thermal resistance offered by an insulator
 - c. Reciprocal of thermal conductivity
 - d. Reciprocal of thermal resistance
- 11. Thermal resistance of a conducting slab
 - a. Increases if area of cross section increases
 - b. Increases if length increases
 - c. Decreases if length increases
 - d. Does not depend on length and area of cross section
- 12. Thermal resistivity of a conducting slab
 - a. Increases if area of cross section increases
 - b. Increases if length increases
 - c. Decreases if length increases
 - d. Does not depend on length and area of cross section
- 13. The SI unit of thermal resistance is
 - a. K/Watt
 - b. Watt/K
 - c. °C/cal
 - d. Cal/°C
- 14. The C.G.S unit of thermal resistance is
 - a. K/Watt
 - b. Watt/K
 - c. $^{\circ}C sec/cal$
 - d. Cal/°C
- 15. If a cylindrical (solid) metal wire is stretched to make its length three times that of initial previous length, then the thermal resistance will
 - a. Remain unchanged
 - b. Become three times
 - c. Become $\frac{1}{3}$ rd
 - d. Become nine times.

Name of the teacher – Soumitra Maity