

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORKSHEET-13 <u>SUBJECT - MATHEMATICS</u> <u>1st - Term</u>

Chapter:	Co-ordinate Geometry	Class: XI
-----------------	-----------------------------	-----------

Topic: Straight Lines 2 Date: 10.08.2020

Choose the cor	(1 x 15=15)						
	pisects the intercept of a line (b) $2x + 5y = 20$	between the axes, then (c) $5x - 2y = 20$					
2 A (6, 3), B (-3, 5), (a) 11/8	C(4, -2) and $D(x, 3x)$ are (b) $8/11$	e four points. If $\triangle DBC$: (c) 3	\triangle <i>ABC</i> = 1 : 2, then <i>x</i> is equal to (d) none of these				
3 If p be the length of	If p be the length of the perpendicular from the origin on the line $x/a + y/b = 1$, then						
(a) $p^2 = a^2 + b^2$	(b) $p^2 = \frac{1}{a^2} + \frac{1}{b^2}$	(c) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$	(d) none of these				
The equation of the line passing through (1, 5) and perpendicular to the line $3x - 5y + 7 = 0$ is							
	0 (b) $3x - 5y + 7 = 0$						
5 The figure formed	by the lines $ax \pm by \pm c = 0$ i	s					
(a) a rectangle	(b) a square	(c) a rhombus	(d) none of these				
6. A line passes through the point (2, 2) and is perpendicular to the line $3x + y = 3$. Its <i>y</i> -intercept is (a) $1/3$ (b) $2/3$ (c) 1 (d) $4/3$							
7. If the lines ax + 12y(a) H.P.	+1 = 0, bx + 13y + 1 = 0 at (b) G.P.	and $cx + 14y + 1 = 0$ are (c) A.P.	concurrent, then <i>a</i> , <i>b</i> , <i>c</i> are in (d) none of these				
8. The number of real values of λ for which the lines $x - 2y + 3 = 0$, $\lambda x + 3y + 1 = 0$ and $4x - \lambda y + 2 = 0$ are concurrent is							
(a) 0	(b) 1	(c) 2	(d) Infinite				
9. The equations of the sides <i>AB</i> , <i>BC</i> and <i>CA</i> of \triangle <i>ABC</i> are $y - x = 2$, $x + 2y = 1$ and $3x + y + 5 = 0$ respectively. The equation of the altitude through <i>B</i> is							
(a) $x - 3y + 1 = 0$	(b) $x - 3y + 4 = 0$	(c) $3x - y + 2 = 0$	(d) none of these				
10. If p_1 and p_2 are the lengths of the perpendiculars from the origin upon the lines $x \sec \theta + y \csc \theta = a$ and $x \cos \theta - y \sin \theta = a \cos 2\theta$ respectively, then							
	(b) $p_1^2 + 4p_2^2 = a^2$	(c) $p_1^2 + p_2^2 = a^2$	(d) none of these				

11. Area of the triangle formed by the points ((a+3)(a+4), a+3), ((a+2)(a+3), (a+2)) and

(c) $24a^2$

(d) none of these

((a+1)(a+2),(a+1)) is

(b) $5a^2$

(a) $25a^2$

12.	If $a + b + c = 0$, then the family of lines $3ax + by + 2c = 0$ pass through fixed point					
	(a) $(2, 2/3)$	(b) (2/3, 2)	(c) $(-2, 2/3)$	(d) none of these		
13.	The line segment jo	ining the points $(-3, -4)$ and	d(1, -2) is divided by y -	axis in the ratio		
	(a) 1:3	(b) 2:3	(c) 3:1	(d) 3:2		
14.	I. The area of a triangle with vertices at $(-4, -1)$, $(1, 2)$ and $(4, -3)$ is					
	(a) 17	(b) 16	(c) 15	(d) none of these		
15.	The line segment join	ning the points $(1, 2)$ and (-2)	, 1) is divided by the line	3x + 4y = 7 in the ratio		
	(a) 3:4	(b) 4:3	(c) 9:4	(d) 4:9		

Prepared by :-

Mr. Sukumar Mandal (SkM)