

WORKSHEET-28

SUBJECT - STATISTICS

Term : 2nd

Topic – Probability Full Marks: 15

Class: XI Date:21 .11. 2020

Q1. Select the correct alternative of the following questions.

(i)	Probability of getting an even number when an unbiased die is rolled once					
	(a) 1/2	(b) 1/6	(c)1/36	(d) none of these		
(ii)	Probability of getting 1 or 2 when an unbiased die is rolled once					
	(a) 1/2	(b) 1/6	(c)1/36	(d) none of these		
(iii)	Probability that the sum of the face values of 2 unbiased dies is 7					
	(a) 1/2	(b) 1/6	(c)1/36	(d) none of these		
(iv)	If the sets A and B are mutually exclusive then $P(A \cup B)$ is					
	(a) 1	(b)Ø	(c)0	(d) none of these		
(v)	If the sets A and B are equally likely then					
	(a) P(A)=0	(b) P(B)=0	(c)P(A)=P(B)	(d) none of these		
(vi)	Total probability of any experiment is					
	(a) 1	(b)Ø	(c)0	(d) none of these		
(vii)	If the sets A and B are equally likely then					
	(a) P(A)=0	(b) P(B)=0	(c)P(A)=P(B)	(d) none of these		
(viii)	The probability can be calculated only of a/an					
	(a) experimer	nt(b) sample space	(c) event	(d) none of these		

(ix)	Probability that neither A or B occurs is					
	(a) A∩ <i>B</i>	(b) 1	(C) 0	(d) none of these		
(x)	The probability of an impossible event is					
	(a) 0	(b) 0.5	(c) 1	(d)none of these		
(xi)	The probabi (a) 0	lity of getting 7 as a fa (b) 1	ace value when an un (c) both	oiased die is (d) none of these		
(xii)	The probabi (a) 0	lity of getting two hea (b) 0.25	ads when an unbiased (c) 0.5	die is rolled thrice (d) none of these		
(xiii)	The probabil (a) -1 & 1	ity of an event lies be (b) 0& 1	etween (c)-1 & 0	(d) none of these		
(xiv)	P(A+B)= 2/3 and P(A-B) = 1/3, then $P(B) =$					
	(a) -1	(b) 1	(c) 0	(d) none of these		
(xv)	For the events A and A^c , P(A) - P(A^c) =					
	(a) 0	(b) -1	(c) 1	(d) none of these		

Prepared by Sanjay Bhattacharya