ST. LAWRENCE HIGH SCHOOL
 TOPIC- Mid point theorem

CLASS: 9

WORK SHEET NO. -22

Sub: Mathematics
Solution
F. M. 15

Date: 1.5.2020

Q.1) Choose the correct options: $1 \times 15=15$

i) In equilateral triangle $A B C$ the mid points of $A B$ and $A C$ are D and E respectively. If $A B=10 \mathrm{~cm}$ then $D E=$
a) 5 cm
ii) In triangle $A B C, B E$ and $C D$ are two medians. If $D E=8 \mathrm{~cm}$ then $B C=$
d) 16 cm
iii) In triangle $A B C$, mid points of $A B$ and $A C$ are X and Y. If $B C+X Y=12$ units then $B C-X Y=$
a) 4 units
iv) $A B C$ is equilateral triangle. D, E, F are the mid points of $A B, A C, B C$ then triangle $D E F$ is
a) equilateral
v) In triangle $A B C, A B$ is bisected at D and $C D$ is bisected at E. If extended $A E$ intersect $B C$ at F then $\mathrm{FC}=$
c) $1 / 3 \mathrm{BC}$
vi) D and E are the mid points of $A B$ and $B C$ of triangle $A B C$. $D A$ is extended upto P so that $D A=A P$. If $P E$ intersect $A C$ at F then $A F=$
c) $1 / 4 \mathrm{AC}$
vii) P, Q, R, S are the mid points of the sides of the rectangle $A B C D$. Then PQRS is a c) rhombus
viii) P is the mid point of $A D$ of parallelogram $A B C D$. If $B P$ and $A C$ intersect at Q then $A C=$ c) $3 A Q$
ix) In triangle $A B C, D$ and E are the mid points of $A B$ and $A C . P$ and Q are mid points of $A D$ and $A E$. If $B C=10 \mathrm{~cm}$, then $P Q=$
b) 2.5 cm
$x) A B C D$ is a square. The diagonals $A C$ and $B D$ meet at O. The bisector of $\angle B A C$ meet $B O$ at P and $B C$ at. Then $O P=$
d) $1 / 2 \mathrm{CQ}$
xi) The length of the diagonals of a parallelogram are 12 cm and 8 cm . The perimeter of the quadrilateral obtained by joining the mid points of the sides of the Parallelogram is c) 20 cm
xii) In triangle $A B C, D, E, F$, are the mid points of $B C, C A$ and $A B$. If $B E$ and $D F$ intersect at P and $C F$ and $D E$ intersect at Q then $P Q$ is equal to
b) $1 / 4 \mathrm{BC}$
xiii) In triangle $A B C, O$ is the mid point of median $A D$. Extended $B O$ intersect $A C$ at X. Y is the mid point of $C X$, if $A C=12.6 \mathrm{~cm}$ then $X Y=$
d) 4.2 cm
xiv) In triangle $A B C, D$ is the mid point of $B C$. $B E$ is perpendicular on the external bisector of $\angle B A C$. Then DE =
a) $1 / 2(A B+A C)$
$x v$) In triangle $A B C,<A$ is a right angle and D is the mid point of hypotenuse $B C$. Then $A D=$ c) $1 / 2 \mathrm{BC}$

