

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION WORK SHEET: 51 Subject : PHYSICS

CLASS : XII

Chapter- Digital circuits				Topic: Bina NO ⁷	Topic: Binary and decimal number system. OR, AND, NOT, NAND, NOR - gates.				
1	A hinamy nymehon 100)0	Multiple choi	ultiple choice questions :		1 X 15 = 15			
1.	A binary number 10	JU represei			2	(1)			
	(a) 8	(b) 16	(c) 3.	2	(d) 64			
2.	In the binary number system $100 + 1011$ is equal to								
	(a) 1000		(b) 1011	(c) 11	10	(d) 1111			
3.	If $A = 1$, $B = 0$, then (a) A	in terms of (t	Boolean algeb) B	ora, $A + \overline{B}$ is equal to (c) \overline{A}	ĨŌ	(d) $\overline{A+B}$			
4.	The following truth A 0 0 1 1 1	table corre B 0 1 0 1	sponds to the l X 0 1 1 1	ogic gate					
	(a) NAND	(t) OR	(c) AN	1D	(d) XOR			
5.	The combinations of NAND gates are shown in fig. are equivalent to (a) an OR gate and an AND gate respectively (b) an AND gate and NOT gate respectively (c) an AND gate and an OR gate respectively (d) an OR gate and a NOT gate respectively								
6.	For the given combination states of inputs A, B, C as then the logic states of o (s) 0,0 (b)	on of gates , i are as follow utput D are 0,1	If the logic s A = B = C = 0 at (c) 1,0	nd $A = B = 1$. $C = 0$, (d) 1,1					

7. Which of the following logic gates is a universal gate ?
(a) OR
(b) NOT
(c) AND

(d) NAND

8.	The output of OR gate (a) if both inputs are ze (c) only if both inputs	is 1 ero (b) if either or b are 1 (d) if either inp	(b) if either or both inputs are 1 (d) if either input is zero. $A \xrightarrow{G_1}$			
9.	Two NOT gates are co (a) NAND gate	nnected at the two inputs of (b) AND gate	f a NAND gate. This combina (c) OR gate	G ₂ ation will behave like (d) NOR gate		
10.	Two inputs of NAND (a) OR gate	gates are shorted. This gate (b) AND gate	e is equivalent to (c) NOT gate	(d) XOR gate		
11.	A logic gate is an elec (a) makes logic decisi (c) works on binary alg	tronic circuit which ons gebra	(b) allows electrons flow only in one direction(d) alternates between 0 and 1 values			
12.	How many NAND gat (a) 1	es are used to form AND ga (b) 2	ate? (c) 3	(d) 4		
13.	NAND gate is (a) a basic gate	(b) not a universal gate	(c) a basic universal gate	(d) a universal gate		
14.	The diagram perform (a) OR gate	s the logic function of (b) NOT gate	(c) AND gate	(d) NAND gate		
				D-•Y		
15.	The fundamental Logic (a) OR and AND	gates ase (b) NOT and OR	(c) NAND and NOR	(d) NAND and NOT.		

Ambarnath Banerjee