

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

WORKSHEET-9 <u>SUBJECT – MATHEMATICS</u> <u>1st - Term</u>

Chapter: ALGEBRA

Class: XI

Topic: Complex numbers

Date: 18.07.2020

Choose the correct option (1 x 15=15)

1 If
$$(x + iy)^{1/3} = a + ib$$
, then $\frac{x}{a} + \frac{y}{b} =$
(a) 0 (b) 1 (c) -1 (d) none of these
2 $(\sqrt{-2})(\sqrt{-3})$ is equal to
(a) $\sqrt{6}$ (b) $-\sqrt{6}$ (c) $i\sqrt{6}$ (d) none of these
3 The value of $(1 + i)^4 + (1 - i)^4$ is
(a) 8 (b) 4 (c) -8 (d) -4
4. If $\sqrt{a + ib} = x + iy$, then possible value of $\sqrt{a - ib}$ is
(a) $x^2 + y^2$ (b) $\sqrt{x^2 + y^2}$ (c) $x + iy$ (d) $x - iy$
5. If $z = \cos \frac{\pi}{4} + i \sin \frac{\pi}{6}$, then
(a) $|z| = 1$, $\arg(z) = \frac{\pi}{4}$ (b) $|z| = 1$, $\arg(z) = \frac{\pi}{6}$
(c) $|z| = \frac{\sqrt{3}}{2}$, $\arg(z) = \frac{5\pi}{24}$ (d) $|z| = \frac{\sqrt{3}}{2}$, $\arg(z) = \tan^{-1} \frac{1}{\sqrt{2}}$
6. The polar form of $(i^{25})^3$ is
(a) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$ (b) $\cos \pi + i \sin \pi$ (c) $\cos \pi - i \sin \pi$ (d) $\cos \frac{\pi}{2} - i \sin \frac{\pi}{2}$

7.	If $i^2 = -1$, then the sum $i + i^2 + i^3 + \dots$ up to 1000 terms is equal to			
	(a) 1	(b) -1	(c) <i>i</i>	(d) 0
8.	If $z = \frac{-2}{1 + i\sqrt{3}}$, then the value of arg(z) is			
	(a) π	(b) $\frac{\pi}{3}$	(c) $\frac{2\pi}{3}$	(d) $\frac{\pi}{4}$
9.	If $a = \cos \theta + i \sin \theta$, the	$nen \frac{1+a}{1-a} =$		
	(a) $\cot \frac{\theta}{2}$	(b) cot θ	(c) $i \cot \frac{\theta}{2}$	(d) $i \tan \frac{\theta}{2}$
10.	If $(1 + i) (1 + 2i) (1 + 3i) \dots (1 + ni) = a + ib$, then 2.5.10.17 $(1 + n^2) =$			
	(a) $a - ib$	(b) $a^2 - b^2$	(c) $a^2 + b^2$	(d) none of these
11.	If $\frac{(a^2 + 1)^2}{2a - i} = x + iy$, then $x^2 + y^2$ is equal to			
	(a) $\frac{(a^2+1)^4}{4a^2+1}$	(b) $\frac{(a+1)^2}{4a^2+1}$	(c) $\frac{(a^2-1)^2}{(4a^2-1)^2}$	(d) none of these
12.	The principal value of the amplitude of $(1 + i)$ is			
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{12}$	(c) $\frac{3\pi}{4}$	(d) π
13.	The least positive integer <i>n</i> such that $\left(\frac{2i}{1+i}\right)^n$ is a positive integer, is			
	(a) 16	(b) 8	(c) 4	(d) 2
14.	If z is a non-zero co	mplex number, then $\frac{ \bar{z} ^2}{z\bar{z}}$	is equal to	
	(a) $\left \frac{\overline{z}}{z} \right $	(b) z	(c) <i>z</i>	(d) none of these
15.	5. If $a = 1 + i$, then a^2 equals			
	(a) 1- <i>i</i>	(b) 2 <i>i</i>	(c) $(1 + i) (1 - i)$	(d) <i>i</i> – 1

Prepared By –

Mr. Sukumar Mandal (SkM)