

St. Lawrence High School

A Jesuit Christian Minority Institution

Term: 1st Work Sheet – 12

Class - XI Subject – Physics

Date -27.06.20

Chapter - Vector

Topic – Cross product

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. If $\vec{A} = 2\hat{\imath} + 3\hat{\jmath}$ and $\vec{B} = \hat{\imath} + \hat{\jmath}$, then what is the component of \vec{A} along the direction of \vec{B} ?

 - a. $\frac{1}{\sqrt{2}}$ b. $\frac{3}{\sqrt{2}}$ c. $\frac{5}{\sqrt{2}}$ d. $\frac{7}{\sqrt{2}}$
- 2. If we multiply a non zero vector by -2, then
 - a. The magnitude will be doubled but direction will be same.
 - b. The magnitude will be same but direction will be reversed.
 - c. The magnitude will be doubled and direction will be reversed.
 - d. Both will remain unchanged
- 3. Choose the incorrect option –

a.
$$\vec{A} \times \vec{A} = \vec{0}$$

b.
$$\vec{A} \cdot \vec{A} = A^2$$

c.
$$\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$$

d.
$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

4. The vector perpendicular to both $3\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} - 2\hat{j} + 4\hat{k}$ is –

a.
$$\frac{1}{\sqrt{3}}(\hat{\imath}-\hat{\jmath}-\hat{k})$$

b.
$$\hat{i} - \hat{j} - \hat{k}$$

c.
$$\frac{1}{\sqrt{3}}(\hat{\imath}+\hat{\jmath}+\hat{k})$$

d.
$$(\sqrt{3} \hat{\imath} - \hat{\jmath} - \hat{k})$$

- 5. For which values of a and b $a \hat{i} + b \hat{j}$ will be perpendicular to $\hat{i} + \hat{j}$?
 - a. 1, 0
 - b. -2, 0
 - c. 3, 0
 - d. $\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$

6.	The velocities of two particles are given as $\hat{i} + \sqrt{3}\hat{j}$ and $2\hat{i} + 2\hat{j}$ respectively. If they start from the	same point,
	then what is the angle between their directions of motion?	
	a. 60°	

- d. 15°
- 7. The initial velocity of a particle is $3\hat{i} + 4\hat{j}$ m/s. If it moves with an acceleration $0.3\hat{i} + 0.4\hat{j}$ m/s², then after 10sec its velocity will be
 - a. 10m/s
 - b. 8.5m/s
 - c. 7m/s
 - d. 7.5m/s
- 8. If $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \cdot \vec{C} = 0$, then \vec{A} will be parallel to
 - a. \vec{C}
 - b. \vec{B}
 - c. $\vec{B} \times \vec{C}$
 - d. $\vec{B} \cdot \vec{C}$
- 9. A thin lamina of area 24m² is placed in YZ plane. Its area vector can be represented by
 - a. 24î
 - b. 24*î*
 - c. $24 \hat{k}$
 - d. $24\hat{i} + 24\hat{j}$
- 10. Two sides of a parallelogram are given as $3\hat{i} + 4\hat{j}$ and $4\hat{i}$. The area of the parallelogram is
 - a. $16 \,\hat{k} \,\text{or} \, -16 \,\hat{k}$
 - b. $16\hat{j}$ or $-16\hat{j}$
 - c. $12\hat{j} + 16\,\hat{k}$
 - d. None of these
- 11. The unit vector perpendicular to the plane contained by two vectors $\hat{i} + \hat{j} \hat{k}$ and $2\hat{i} 3\hat{j} + \hat{k}$ is
 - a. $2\hat{i} + 3\hat{j} + 5\hat{k}$
 - b. $-(2\hat{i}+3\hat{j}+5\hat{k})$
 - $c. \frac{2\hat{\imath} + 3\hat{\jmath} + 5\hat{k}}{\sqrt{38}}$
 - d. none of these
- 12. For two non zero vectors \vec{A} and $\vec{B} | \vec{A} \times \vec{B} | = \vec{A} \cdot \vec{B}$, then the angle between them will be
 - a. 30°
 - b. 45°
 - c. 60°
 - d. 90°

- 13. If , $|\vec{A} \times \vec{B}| : \vec{A} \cdot \vec{B} = 1 : \sqrt{3}$, then the angle between two vectors will be
 - a. 30°
 - b. 45°
 - c. 60°
 - d. 120°
- 14. The magnitude of the area of the triangle whose two sides are given as two vectors as $\hat{i} 2\hat{j} 2\hat{k}$ and

$$2\hat{\imath} + \hat{\jmath} + \hat{k}$$
 is –

- a. 0
- b. 5 unit
- c. $5\sqrt{2}$ unit
- d. 50 unit
- 15. The three vertices of triangle are given as (1,1,1), (3,1,3) and (1,5,5). What will be the magnitude of the area of the triangle?
 - a. 4 unit
 - b. $4\sqrt{3}$ unit
 - c. 8 unit
 - d. $8\sqrt{3}$ unit

Name of the teacher – Soumitra Maity