

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

CLASS 8 SUBJECT :Algebra andGeometryWork sheet14 Answer key Marks:15TRIANGLES Date:1.3.21

Answer all thefollowing questions(1×15=15)

1) In triangle ABC, if AB=BC and $\angle B = 70^{\circ}$, $\angle A$ will be:

a. 70°

b. 110°

c. 55°

d. 130°

Answer: c

Explanation: Given,

AB = BC

Hence, $\angle A = \angle C$

And $\angle B = 70^{\circ}$

By angle sum property of triangle we know:

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $2 \angle A + \angle B = 180^{\circ}$

 $2 \ge A = 180 - \ge B = 180 - 70 = 110^{\circ}$

 $\angle A = 55^{\circ}$

2) For two triangles, if two angles and the included side of one triangle are equal to two angles and the included side of another triangle. Then the congruency rule is:

a. SSS

b. ASA

c. SAS

d. None of the above

Answer: **b**

3) A triangle in which two sides are equal is called:

- a. Scalene triangle
- b. Equilateral triangle
- c. Isosceles triangle
- d. None of the above

Answer: c

- 4) The angles opposite to equal sides of a triangle are:
- a. Equal
- b. Unequal
- c. supplementary angles
- d. Complementary angles

Answer: a

5) If E and F are the midpoints of equal sides AB and AC of a triangle ABC. Then:

- a. BF=AC
- b. BF=AF
- c. CE=AB
- d. BF = CE

Answer: d

Explanation: AB and AC are equal sides.

AB = AC (Given)

 $\angle A = \angle A$ (Common angle)

AE = AF (Halves of equal sides)

 $\triangle ABF \cong \triangle ACE (By SAS rule)$

Hence, BF = CE (CPCT)

6) ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively. Then:

a. BE>CF

b. BE<CF

c. BE=CF

d. None of the above

Answer: c

Explanation:

 $\angle A = \angle A$ (common arm)

 $\angle AEB = \angle AFC$ (Right angles)

AB = AC (Given)

 $\therefore \Delta AEB \cong \Delta AFC$

Hence, BE = CF (by CPCT)

7) If ABC and DBC are two isosceles triangles on the same base BC. Then:

a. ∠ABD = ∠ACD

b. ∠ABD >∠ACD

c. $\angle ABD < \angle ACD$

d. None of the above

Answer: **a**

Explanation: AD = AD (Common arm)

AB = AC (Sides of isosceles triangle)

BD = CD (Sides of isosceles triangle)

So, $\triangle ABD \cong \triangle ACD$.

 $\therefore \angle ABD = \angle ACD (By CPCT)$

8) If ABC is an equilateral triangle, then each angle equals to:

a. 90°

B.180°

c. 120°

d. 60°

Answer: **d**

Explanation: Equilateral triangle has all its sides equal and each angle measures 60° .

AB = BC = AC (All sides are equal)

Hence, $\angle A = \angle B = \angle C$ (Opposite angles of equal sides)

Also, we know that,

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $\Rightarrow 3 \angle A = 180^{\circ}$

 $\Rightarrow \angle A = 60^{\circ}$

 $\therefore \angle A = \angle B = \angle C = 60^{\circ}$

9) If AD is an altitude of an isosceles triangle ABC in which AB = AC. Then:

a. BD=CD

b. BD>CD

c. BD<CD

d. None of the above

Answer: **a**

Explanation: In \triangle ABD and \triangle ACD,

 $\angle ADB = \angle ADC = 90^{\circ}$

AB = AC (Given)

AD = AD (Common)

 $\therefore \Delta ABD \cong \Delta ACD$ (By RHS congruence condition)

BD = CD (By CPCT)

10) In a right triangle, the longest side is:

a. Perpendicular

b. Hypotenuse

c. Base

d. None of the above

Answer: **b**

Explanation: In triangle ABC, right-angled at B.

 $\angle B = 90$

By angle sum property, we know:

 $\angle A + \angle B + \angle C = 180$

Hence, $\angle A + \angle C = 90$

So, $\angle B$ is the largest angle.

Therefore, the side (hypotenuse) opposite to largest angle will be longest one.

11. Two triangles, A PQR and ADEF are of the same size and shape. What can we conclude about them?

- (a) Δ PQR is smaller than Δ DFE.
- (b) ΔPQR is larger than ΔDFE .
- (c) Δ PQR is congruent to Δ DFE.
- (d) Δ PQR is not congruent to Δ DFE.
- (c) $\triangle PQR$ is congruent to $\triangle DFE$.
- 12. Which of the following is not a congruence criterion?
- (a) ASA
- (b) SAS
- (c) SSS
- (d) None of these

► (d) None of these

13. \triangle ABC and \triangle PQR are congruent under the correspondence: ABC \leftrightarrow RQP, then the part of \triangle ABC that correspond to \angle P is

- (a) ∠A
- (b) ∠C
- (c) ∠B
- (d) None of these

► (b) ∠C

14. In \triangle PQR and \triangle XYZ, \angle P = 500, XY = PQ, and XZ = PR. By which property are \triangle XYZ and \triangle PQR congruent?

- (a) S.S.S. property
- (b) S.A.S. property

(c) A.S.A. property

(d) R.H.S. property

► (b) S.A.S. property

15. Two students drew a line segment each. What is the condition for them to be congruent?

- (a) They should be drawn with a scale.
- (b) They should be drawn on the same sheet of paper.
- (c) They should have different lengths.
- (d) They should have the same length.
- ► (d) They should have the same length.

IndranilGhosh