Answer all thefollowing questions($1 \times 15=15$)

1) In triangle $A B C$, if $A B=B C$ and $\angle B=70^{\circ}, \angle A$ will be:
a. 70°
b. 110°
c. 55°
d. 130°

Answer: c
Explanation: Given,
$\mathrm{AB}=\mathrm{BC}$
Hence, $\angle \mathrm{A}=\angle \mathrm{C}$
And $\angle \mathrm{B}=70^{\circ}$
By angle sum property of triangle we know:
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$2 \angle \mathrm{~A}+\angle \mathrm{B}=180^{\circ}$
$2 \angle \mathrm{~A}=180-\angle \mathrm{B}=180-70=110^{\circ}$
$\angle \mathrm{A}=55^{\circ}$
2) For two triangles, if two angles and the included side of one triangle are equal to two angles and the included side of another triangle. Then the congruency rule is:
a. SSS
b. ASA
c. SAS
d. None of the above

Answer: b
3) A triangle in which two sides are equal is called:
a. Scalene triangle
b. Equilateral triangle
c. Isosceles triangle
d. None of the above

Answer: c
4) The angles opposite to equal sides of a triangle are:
a. Equal
b. Unequal
c. supplementary angles
d. Complementary angles

Answer: a
5) If E and F are the midpoints of equal sides AB and AC of a triangle ABC . Then:
a. $\mathrm{BF}=\mathrm{AC}$
b. $\mathrm{BF}=\mathrm{AF}$
c. $C E=A B$
d. $\mathrm{BF}=\mathrm{CE}$

Answer: d
Explanation: AB and AC are equal sides.
$\mathrm{AB}=\mathrm{AC}$ (Given)
$\angle \mathrm{A}=\angle \mathrm{A}$ (Common angle)
$\mathrm{AE}=\mathrm{AF}$ (Halves of equal sides)
$\Delta \mathrm{ABF} \cong \triangle \mathrm{ACE}$ (By SAS rule)
Hence, $\mathrm{BF}=\mathrm{CE}$ (CPCT)
6) ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively. Then:
a. $\mathrm{BE}>\mathrm{CF}$
b. $\mathrm{BE}<\mathrm{CF}$
c. $\mathrm{BE}=\mathrm{CF}$
d. None of the above

Answer: c

Explanation:

$\angle \mathrm{A}=\angle \mathrm{A}$ (common arm)
$\angle \mathrm{AEB}=\angle \mathrm{AFC}$ (Right angles)
$\mathrm{AB}=\mathrm{AC}$ (Given)
$\therefore \triangle \mathrm{AEB} \cong \triangle \mathrm{AFC}$
Hence, $\mathrm{BE}=\mathrm{CF}$ (by CPCT)
7) If ABC and DBC are two isosceles triangles on the same base BC . Then:
a. $\angle \mathrm{ABD}=\angle \mathrm{ACD}$
b. $\angle \mathrm{ABD}>\angle \mathrm{ACD}$
c. $\angle \mathrm{ABD}<\angle \mathrm{ACD}$
d. None of the above

Answer: a

Explanation: $\mathrm{AD}=\mathrm{AD}$ (Common arm)
$\mathrm{AB}=\mathrm{AC}$ (Sides of isosceles triangle)
$\mathrm{BD}=\mathrm{CD}$ (Sides of isosceles triangle)
So, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$.
$\therefore \angle \mathrm{ABD}=\angle \mathrm{ACD}$ (By CPCT)
8) If ABC is an equilateral triangle, then each angle equals to:
a. 90°
B. 180°
c. 120°
d. 60°

Answer: d
Explanation: Equilateral triangle has all its sides equal and each angle measures 60°.
$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$ (All sides are equal)
Hence, $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}$ (Opposite angles of equal sides)

Also, we know that,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 3 \angle \mathrm{~A}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=60^{\circ}$
$\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
9) If $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Then:
a. $\mathrm{BD}=\mathrm{CD}$
b. $\mathrm{BD}>\mathrm{CD}$
c. $\mathrm{BD}<\mathrm{CD}$
d. None of the above

Answer: a

Explanation: In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$\mathrm{AB}=\mathrm{AC}$ (Given)
$\mathrm{AD}=\mathrm{AD}$ (Common)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ (By RHS congruence condition)
$\mathrm{BD}=\mathrm{CD}(\mathrm{By} \mathrm{CPCT})$
10) In a right triangle, the longest side is:
a. Perpendicular
b. Hypotenuse
c. Base
d. None of the above

Answer: b
Explanation: In triangle ABC , right-angled at B .
$\angle \mathrm{B}=90$
By angle sum property, we know:
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180$
Hence, $\angle \mathrm{A}+\angle \mathrm{C}=90$

So, $\angle \mathrm{B}$ is the largest angle.
Therefore, the side (hypotenuse) opposite to largest angle will be longest one.
11. Two triangles, A PQR and ADEF are of the same size and shape. What can we conclude about them?
(a) $\triangle \mathrm{PQR}$ is smaller than $\triangle \mathrm{DFE}$.
(b) $\triangle P Q R$ is larger than $\triangle D F E$.
(c) $\triangle P Q R$ is congruent to $\triangle D F E$.
(d) $\triangle P Q R$ is not congruent to $\triangle D F E$.
(c) $\triangle P Q R$ is congruent to $\triangle D F E$.
12. Which of the following is not a congruence criterion?
(a) ASA
(b) SAS
(c) SSS
(d) None of these
(d) None of these
13. $\triangle A B C$ and $\triangle P Q R$ are congruent under the correspondence: $A B C \leftrightarrow R Q P$, then the part of $\triangle A B C$ that correspond to $\angle P$ is
(a) $\angle A$
(b) $\angle \mathrm{C}$
(c) $\angle B$
(d) None of these
(b) $\angle \mathrm{C}$
14. In $\triangle P Q R$ and $\triangle X Y Z, \angle P=500, X Y=P Q$, and $X Z=P R$. By which property are $\triangle \mathrm{XYZ}$ and $\triangle \mathrm{PQR}$ congruent?
(a) S.S.S. property
(b) S.A.S. property
(c) A.S.A. property
(d) R.H.S. property
(b) S.A.S. property
15. Two students drew a line segment each. What is the condition for them to be congruent?
(a) They should be drawn with a scale.
(b) They should be drawn on the same sheet of paper.
(c) They should have different lengths.
(d) They should have the same length.
(d) They should have the same length.

IndranilGhosh

