

SOLUTION OF WORKSHEET-29

SUBJECT - STATISTICS

Term : Final

Topic – BINOMIAL DISTRIBUTION

Full Marks: 15

Date:16.01.2021

Class: XII

Q1. Select the correct alternative of the following questions.

(i)	The mean deviation in Binomial distribution $(7, \frac{1}{6})$ is						
	a) 0.39	b) 0.93	c) 0.49	0	d) non	e of these	
(ii)	The maximum b) 1.20	n variance in B b) 1.2	inomial o 5	distribution (s c) 2.25	5, p) is d) non	e of these	
(iii)	For a binomia a) 0	ll distribution i b) 1	f mean is	s equal to its v c) either 0 or	ariance, 1	then p is equal to d) none of th	
(iv)	The binomial	distribution $(n+2, \frac{p}{2})$ is mesokurtic if and only if					
	a) p = 1	b) p > 1	Z	c) p< 1		d) none of these	
(v)	The binomial distribution $(n+3, p)$ is leptokurtic if and only if						
	a) $p = \frac{1}{2}$	b) $p > \frac{1}{2}$		c) p < $\frac{1}{2}$		d) none of these	
(vi)	All odd-ordered central moments are zero for a distribution which is						
	a) Positively	skewed b) neg	atively sk	ewed c)sym	metric	d) none of these	
(vii)	Expectation of a discrete random variable assuming integral values must be						
	a) Integer	b) non	integer	c) rational nu	mber	d) none of these	
(viii)	For a random variable X, the first order central moment is always						
	a) 0	b) -1	c) 1	d) non	e of these	2	

(ix)	For a symmetrically distributed random variable X, $(X \le mode) * P(X \ge mode)$						
	a) + b)	= c) ≠	d) none of the	ese			
(x)	If a random variable X defines waiting time in a bus stand, then X follows						
	a) binomial	b) Poisson	c) Uniform	d) none of these			
(xi)	If $X \sim Poisson(2)$, then P(X=3) is						
	a) 2 <i>e</i> ⁻²	b) $\frac{4}{3}e^{2}$	c) 2 <i>e</i> ⁻¹	d) none of these			
(xii)	If $X \sim Poisson(1)$, then P(X=0) is						
	a) $2e^{-2}$	b) 2 <i>e</i> ²	c) <i>e</i> ⁻¹	d) none of these			
(xiii)	Standard deviation of a Poisson distribution is 2. Then the value of β_2 is						
	a) 0.25	b) 0.75	c) 0.57	d) none of these			
(xiv)	The probability distribution which has mean is greater than its standard deviation i						
	a) binomial	b) Poisson	c) Uniform	d) none of these			
(xv)	The mode of uniform distribution is represented by						
	a) all the observa	tions	b) none of the observatyion				
	c) few observations	5	d) none of these				

(ix)

Prepared by

Sanjay Bhattacharya