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This distribution occurs when the different values of random variables 

are equally probable. Suppose for instance that an unbiased die is 

rolled and the random variable X denotes the number of points on the 

face of the die. Then X has a uniform distribution, because it takes 

values 1, 2, …, 6, each with probability 
1

6
. In general, this distribution is 

defined by the probability mass function 

𝑓 𝑥 =  
1

𝑛
, ∀ 𝑥 = 𝑎 ℎ  𝑛 − 1 ℎ 

Where a and h are fixed real numbers and n is a fixed positive integer. 

Obviously, 𝑓 𝑥 ≥ 0, ∀ 𝑥 

And 

 𝑓 𝑥 =  
1

𝑛
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PROPERTIES: 

Note that 
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Mean =  𝜇 = 𝐸 𝑋  
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2.  Variance of X = 𝜎2 = 𝐸 𝑋 − 𝜇 2 

=   (𝑥 − 𝜇)2  𝑓(𝑥)
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3. 𝜇3 = 𝐸(𝑋 − 𝜇)3 
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Putting the values of different sums and simplifying, we get 

𝜇3 = 0 

Similarly,  

 

 



 

 

𝜇4 = 𝐸(𝑋 − 𝜇)4 
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 𝑛 − 1  

4𝑛−1

𝑖=0

 

=
ℎ4

240
  𝑛2 − 1  3𝑛2 − 7  

So 𝛽1 =  
𝜇3

2

𝜇2
3  = 0 

𝛽2 =  
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𝜇2
2 
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= 1.8 
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7
3
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Which is less than 1.8 for finite values of n and tends to 1.8 as 𝑛 → ∞ 

So the measure of skewness 𝛾1 = 0 

And the measure of kurtosis 𝛾2 =  𝛽2 − 3 < 0  

Thus the Uniform distribution is symmetric and platykurtic. 
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