ST. LAWRENCE HIGH SCHOOL

TOPIC - Theorems on Concurrence

Subject: Mathematics
WORKSHEET NO. - 3
$\begin{array}{lll}\text { Class-9 } & \text { Second Term } & \text { F. M. } 15\end{array}$
Solutions
Date: 14.11.2020

Q.1) Choose the correct option:

i) If the length of the circumradius of a right angled triangle is 7.5 cm then the length of its hypotenuse is
c) 15 cm
ii) I is the incentre of $\triangle A B C$. If $\angle B I C=130^{\circ}$ then measure of $\angle B A C$ is
d) 80°
iii) The internal bisectors of $\angle B$ and $\angle C$ of $\triangle A B C$, intersect at the point O. If $\angle A=80^{\circ}$, then measure of $\angle B O C$ is c) 130°
iv) In $\triangle A B C, \angle B=90^{\circ}$. If $A B=24 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of the circumradius of the triangle is
d) 12.5 cm
v) O is the circumcentre of $\triangle A B C$. If $\angle B O C=80^{\circ}$, then $\angle B A C$ is
a) 40°
vi) O is the orthocentre of $\triangle A B C$. If $\angle B A C=40^{\circ}$, then $\angle B O C$ is
b) 140°
vii) O is the incentre of $\triangle A B C$. If $\angle B O C=116^{\circ}$, then measure of $\angle B A C$ is
c) 52°
viii) O is the circumcentre of $\triangle A B C$. If $\angle A B C=72^{\circ}, \angle A C B=68^{\circ}$, then measure of $\angle O B C$ is
c) 50°
ix) O is the orthocentre of $\triangle A B C$. If $\angle B O C=100^{\circ}$, then measure of $\angle B A C$ is
d) 80°
x) The length of the side of an equilateral triangle is 6 cm . Then its circumradius is c) $2 \sqrt{ } 3 \mathrm{~cm}$
xi) The inradius of an equilateral triangle is what fraction of its height?
c) $1 / 3^{\text {rd }}$
xii) The circumradius of an equilateral triangle is what fraction of its height
b) $2 / 3^{\text {rd }}$
xiii) In $\triangle A B C$, the internal bisector of $\angle A B C$ and the external bisector of $\angle A C B$ intersect at O. If $\angle B O C=40^{\circ}$, then the measure of $\angle B A C$ is
b) 80°
xiv) The point equidistant from the sides of a triangle is called \qquad
b) Incentre
xv) The point equidistant from the vertices of a triangle is called \qquad
d) Circumcentre

