A JESUIT CHRISTIAN MINORITY INSTITUTION

CLASS 8
Work sheet 17 answer key
SUBJECT : Arithmetic
Marks:15
Circles(Area)
Date:25.4.2020

Answer all the following questions($1 \times 15=15$)

1. The area of the circle is $154 \mathrm{~cm}^{2}$. The radius of the circle is
(a) 7 cm
(b) 14 cm
(c) 3.5 cm
d) 17.5 cm

Answer: d Explaination: Reason: Area of circle $=154 \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{nr}^{2}=154 \mathrm{~cm}^{2}$
$\Rightarrow 22 / 7 \times r^{2}=154$
$\Rightarrow r^{2}=154 \times 22 / 7$
$\Rightarrow r^{2}=7 \times 7=49$
$\therefore r=\sqrt{ } 49=7$
2. The area of a quadrant of a circle whose circumference is 22 cm , is
(a) $\frac{11}{8} \mathrm{~cm}^{2}$
(b) $\frac{77}{2} \mathrm{~cm}^{2}$
(c) $\frac{77}{4} \mathrm{~cm}^{2}$ (d) $\frac{77}{8} \mathrm{~cm}^{2}$

Answer: d
Explaination: Reason: Here $2 \pi r=22 \mathrm{~cm}$
$2 \times 22 / 7 \times r=22$
$\Rightarrow r=22 \times 7 / 22 \times 12=72 \mathrm{~cm}$
\therefore Area of quadrant of circle $=14 \pi r^{2}=14 \times 22 / 7 \times 72 \times 72=77 / 8 \mathrm{~cm}^{2}$
3. Area of circular ring is
(a) $\pi\left(R^{2}-r^{2}\right)$
(b) $\pi R r$
(c) $\pi(R+r)$
(d) $\pi(R-r)$

Answer: a
4. The area of the circle whose diameter is 21 cm is
(a) $346.5 \mathrm{~cm}^{2}$
(b) $37.68 \mathrm{~cm}^{2}$
(c) $18.84 \mathrm{~cm}^{2}$
(d) $19.84 \mathrm{~cm}^{2}$

Answer: a

Explaination: Reason: Here diameter $=21 \mathrm{~cm}$
\therefore Radius $\mathrm{r}=21 / 2 \mathrm{~cm}$
Area of the circle, $\mathrm{A}=\pi \mathrm{r}^{2}$
$\therefore \mathrm{A}=22 / 7 \times 21 / 2 \times 21 / 2=11 \times 3 \times 21 / 2=693 / 2=346.5 \mathrm{~cm}^{2}$
5. The area of a circle whose circumference is 22 cm , is
(a) $11 \mathrm{~cm}^{2}$
(b) $38.5 \mathrm{~cm}^{2}$
(c) $22 \mathrm{~cm}^{2}$
(d) $77 \mathrm{~cm}^{2}$

Answer: b
Explaination:
(b); Reason: Circumference of circle $=22 \mathrm{~cm}, \quad 2 \pi r=22 \mathrm{~cm}$
$\Rightarrow 2\left(\frac{22}{7}\right) r=22 \quad \Rightarrow r=\frac{22 \times 7}{2 \times 22}=\frac{7}{2} \mathrm{~cm}$
$\therefore \quad$ Area of circle $=\pi r^{2}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=\frac{77}{2}=38.5 \mathrm{~cm}$
6. The area of a circle is $154 \mathrm{~cm}^{2}$ Its diameter is
(a) 7 cm
(b) 14 cm
(c) 21 cm
(d) 28 cm

Answer: b
Explaination: Reason: Here area of the circle, $\mathrm{A}=154 \mathrm{~cm}^{2}$, Radius, $\mathrm{r}=$?
Area of the circle $=154 \mathrm{~cm}^{2} \ldots$ (Given)
$\therefore \pi r^{2}=154$
$\Rightarrow 22 / 7 \times \mathrm{r}^{2}=154$
$\Rightarrow r^{2}=154 \times 7 / 22=7 \times 7$
$\Rightarrow \mathrm{r}=7 \mathrm{~cm}$
\therefore Diameter of the circle $=2 \times r=2 \times 7=14 \mathrm{~cm}$
7. The area of the circle that can be inscribed in a square of side 6 cm , is
(a) $18 \mathrm{~m} \mathrm{~cm}^{2}$
(b) $12 \pi \mathrm{~cm}^{2}$
(c) $9 \pi \mathrm{~cm}^{2}$
(d) $14 \mathrm{~m} \mathrm{~cm}^{2}$

Answer: c
Explaination: Reason: Size of square $=6 \mathrm{~cm}$, radius $=62=3 \mathrm{~cm}$;
Area of the circle $=\pi r^{2}=\pi \times 3 \times 3=9 \pi \mathrm{~cm}^{2}$
8. The radii of two circles are 4 cm and 3 cm respectively. The diameter of the circle having area equal to the sum of the areas of the two circles (in cm) is
(a) 5
(b) 7
(c) 10
(d) 14

Answer: c
Explaination:
(c) $\quad \pi \mathrm{R}^{2}=\pi r_{1}^{2}+\pi r_{2}^{2}$

$$
=\pi\left[r_{1}^{2}+r_{2}^{2}\right]=\pi\left[4^{2}+3^{2}\right]
$$

$$
\Rightarrow \mathrm{R}^{2}=25 \Rightarrow \mathrm{R}=5 \mathrm{~cm}
$$

$$
d=5 \times 2=10 \mathrm{~cm}
$$

9. If the area of a circle is numerically equal to twice its circumference, then the diameter of the circle is
(a) 4 units
(b) n units
(c) 8 units
(d) 2 units

Answer: c
Explaination:
(c) $\pi r^{2}=2 \pi r \times 2$
$\Rightarrow r=4$
$\Rightarrow 2 r=8$ units
10. If the circumference of a circle is 352 metres, then its area in square metres is
(a) 5986
(b) 6589
(c) 7952
(d) 9856

Answer: d
Explaination:
(d) $\because 2 \pi r=352 \Rightarrow r=\frac{176}{\pi}$

$$
\begin{aligned}
\therefore \text { Area } & =\pi r^{2}=\frac{\pi \times 176 \times 176}{\pi \times \pi} \\
& =\frac{176 \times 176 \times 7}{22}=9856 \mathrm{~m}^{2}
\end{aligned}
$$

11. Area of the largest triangle that can be inscribed in a semi-circle of radius r units is (a) r^{2} sq. units
(b) $12 r^{2}$ sq. units
(c) $2 r^{2}$ sq. units
(d) $\sqrt{ } 2 r^{2}$ sq. units

Answer: a
Explaination:
(a) Area of triangle

$$
\begin{aligned}
& =\frac{1}{2} \times \text { base } \times \text { altitude } \\
& =\frac{1}{2} \times 2 r \times r=r^{2} \text { sq. units }
\end{aligned}
$$

12. If the circumferences of two circles are in the ratio $4: 9$, then the ratio in their area is
(a) $9: 4$
(b) $4: 9$
(c) $2: 3$
(d) $16: 81$

Answer: d
Explaination:
(d) $\frac{2 \pi r_{1}}{2 \pi r_{2}}=\frac{4}{9} \Rightarrow \frac{r_{1}}{r_{2}}=\frac{4}{9}$

Now $\frac{\pi r_{1}^{2}}{\pi r_{2}^{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}$
\therefore Ratio of areas $=16: 81$
13. The ratio of the areas of the incircle and circumcircle of a square is
(a) $1: 2$
(b) $1: 3$
(c) $1: 4$
(d) $1: \sqrt{ } 2$

Answer: a
Explaination:
(a) Let side of square $=x$ units
\therefore Diagonal of the square $=\sqrt{ } 2 \mathrm{x}$ units
Diameter of the incircle $=x$ units

Diameter of the circumcircle $=\sqrt{ } 2 x$ units

- Area of incircle
$\therefore \overline{\text { Area of circumcircle }}$

$$
=\frac{\pi\left(\frac{x}{2}\right)^{2}}{\pi\left(\frac{\sqrt{2} x}{2}\right)^{2}}=\frac{1}{2}
$$

14. Area of quadrant of a circle is
(a) $\pi r^{2} / 4$
(b) πr
(c) $\pi / 4$
(d) 4π

Answer: a
15.Area of semi circle is
(a) $\pi r^{2} / 2$
(b)2T
(c) $\pi / 2 r$
(d) πr

Answer: a

