

SOLUTION OF WORKSHEET-31

SUBJECT - STATISTICS

Term : 2nd

Topic – Probability Full Marks: 15

Class: XI Date:18 .01. 2021

Q1. Select the correct alternative of the following questions.

(i)	Probability o (a) 1/2	f getting an odd num (b) 1/6	ber when an unbiase (c)1/36	d die is rolled once (d) none of these	
(ii)	Probability o (a) 1/2	f getting 3 or 4 whe (b) 1/6	n an unbiased die is ro (c)1/36	olled once (d) none of these	
(iii)	Probability tl (a) 1/2	hat the sum of the fac (b) 1/6	e values of 2 unbiase (c)1/36	d dies is 6 (d) none of these	
(iv)	If the sets A and B are mutually exclusive then $P(A \cup B)$ is(a) 1(b) \emptyset (c) 0(d) none of these				
(v)	If the sets A and B are equally likely then (a) P(A)=0 (b) P(B)=0 (c)P(A)=P(B) (d) none of these				
(vi)	Total probability of any experiment is(a) 0.5(b)Ø(c)0(d) none of these				
(vii)	If the sets A and B are exhaustive then (a) P(A)=0 (b) P(B)=0 (c)P(A)=P(B) (d) none of these				
(viii)	The probability can be calculated only of a/an(a) experiment(b) sample space(c) event(d) none of these				

(ix)	Probability that either A or B occurs is						
	(a) A∩ <i>B</i>	(b) 1	(C) 0	(d) none of these			
(x)	The probability of a sure event is						
	(a) 0	(b) 0.5	(c) 1	(d)none of these			
(xi)	The probability of getting 9 as a face value when an unbiased die is						
	(a) 0	(b) 1	(c) both	(d) none of these			
(xii)	The probability of getting two heads when an unbiased die is rolled 4 times						
	(a) 0	(b) 0.25	(c) 0.5	(d) none of these			
(xiii)	The probability of selecting 2 red balls from 6 identiocal red balls is						
	(a) -1 & 1	(b) 1	(c)-1 & 0	(d) none of these			
(xiv)	P(A+B)= 2/3 and P(B-A) = 1/3, then $P(B) =$						
	(a) -1	(b) 1	(c) 0	(d) none of these			
(xv)	For the events A and A^c , P(A) - P(A^c) =						
	(a) 0	(b) -1	(c) 1	(d) none of these			
	P(A+B)= 2/3 (a) -1 For the even	ts A and A^c , P(A) = 1/3, the	en P(B) = (c) 0 A^c) =	(d) none of these			

Prepared by Sanjay Bhattacharya