Answer all the following questions(1×15=15)

1. Square of an even number is always
(a) even
(b) odd
(c) even or odd
(d) none of these

Solution:
Square of an even number is always even. (a)
2.

$$
\sqrt{208+\sqrt{2304}} \text { is equal to }
$$

(a) 18
(b) 16
(c) 14
(d) 22

Solution:

$$
\begin{align*}
& \sqrt{208+\sqrt{2304}} \\
& =\sqrt{208+48} \\
& =\sqrt{256}=16 \tag{b}
\end{align*}
$$

3.
$\sqrt{0.0016}$ is equal to
(a) 0.04
(b) 0.004
(c) 0.4
(d) none of these

Solution:

$$
\begin{aligned}
& \sqrt{0.0016}=0.04 \\
& 04 \begin{array}{|c}
\frac{0.04}{0.00} \frac{16}{16} \\
\times
\end{array}
\end{aligned}
$$

4. The smallest number by which 75 should be divided to make it a perfect square is (a) 1
(b) 2
(c) 3
(d) 4

Solution:

```
75=3\times5\times5
Factor 3 is unpaired
\therefore By dividing 75 by 3, we get a perfect square of 5
```

5. Question 9.
$\sqrt{3+\frac{6}{25}}$ is equal to
(a) $\frac{5}{9}$
(b) $\frac{4}{5}$
(c) $\frac{9}{5}$
(d) $\frac{5}{4}$

Solution:

$$
\begin{align*}
& \sqrt{3 \frac{6}{25}}=\sqrt{\frac{81}{25}}=\frac{\sqrt{81}}{\sqrt{25}} \\
& =\frac{9}{5}=1 \frac{4}{5} \tag{c}
\end{align*}
$$

6. The smallest number by which 162 should be multiplied to make it a perfect square is
(a) 4
(b) 3
(c) 2
(d) 1

Solution:

```
162=2\times3\times3\times3\times3
For 2 is left unpairs. So, by multiplying 162 by 2,
we get a perfect square.
\therefore}\mathrm{ Required least number to be multiplied =2 (c)
```

7. If the area of a square field is 961 unit 2, then the length of its side is
(a) 29 units
(b) 41 units
(c) 31 untis
(d) 39 units

Solution:

$$
\begin{aligned}
& \text { Area of a square }=961 \text { unit }^{2} \\
& \therefore \text { It's side }=\sqrt{961} \text { unit }=31 \text { unit (c) } \\
& \quad 3 \begin{array}{l}
31 \\
\\
61 \frac{9}{9} \underline{61} \\
61
\end{array} \\
& \qquad \frac{61}{x}
\end{aligned}
$$

8. The smallest number that should be subtracted from 300 to make it a perfect square is
(a) 11
(b) 12
(c) 13
(d) 14

Solution:

```
300
Taking the square root of 300,
we see that 11 is left unpaired.
\therefore11 be subtracted. (a)
    17
    27 \frac{1}{200}
    189
```

9. Given that $\quad \sqrt{1521}=39$, the value of $\quad \sqrt{0.1521}+\sqrt{15.21}$ is
(a) 42.9
(b) 4.29
(c) 3.51
(d) 35.1

Solution:

$$
\begin{aligned}
& \sqrt{1521}=39, \text { then value of } \sqrt{0.1521}+\sqrt{15.21} \\
& =0.39+3.9=4.29(\mathrm{~b})
\end{aligned}
$$

10. If a number has digits in the unit's place, then its square ends in 11
(a) 1,9
(b) 2,3
(c) 4,6
(d) 7,8

Solution: a)
11. Number of zeros in the end of the square of 400 is \qquad
(a) 5
(b) 4
(c) 2
(d) 6

Solution: b)
12. A number ending in an even number of \qquad is always a perfect square.
(a) 2' s
(b) 0 ' s
(c) 3 ' s
(d) 1' s

Solution: b) , 500 is not a perfect square
13. Square of an odd number is always an \qquad number.
(a) prime
(b) even
(c) odd
(d) none of these

Solution: c)
14. Square of any number can be expressed as the sum of two consecutive natural numbers
(a) odd
(b) prime
(c)even
(d) none of these

Solution: a)
15.Square of an even number is always
(a) negative
(b) even
(c) odd
(d) none of these

Solution: b)

