

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

Worksheet-28

SUBJECT - MATHEMATICS

2nd-term

Chapter: Probability Class: XII

Topic: Probability Date: 23.11.2020

Choose the correct option

 $(1 \times 15 = 15)$

Question 1.

If the event A and B are independent, then $P(A \cap B)$ is equal to

- (a) P(a) + P(b)
- (b) P(a) P(b)
- (c) P(a). P(b)
- (d) P(a) | P(b)

Question 2.

If $P(a) = \frac{4}{5}$ and $P(A \cap B) = \frac{7}{10}$, then P(B/A) is equal

- (a) $\frac{1}{10}$
- (b) $\frac{1}{8}$ (c) $\frac{7}{8}$
- (d) $\frac{17}{20}$

Question 3.

If $P(A \cap B) = \frac{7}{10}$ and $P(b) = \frac{17}{20}$, then P(A|B) equals

Question 4.

If $P(a) = \frac{7}{10} P(b) = \frac{7}{10}$ and $P(A \cup B) = \frac{7}{10}$ then P(B|A) + P(A|B) equals

- $\begin{array}{c} \text{(a)} \ \frac{1}{4} \\ \text{(b)} \ \frac{1}{3} \\ \text{(c)} \ \frac{5}{12} \\ \text{(d)} \ \frac{7}{12} \end{array}$

Question 5.

If $P(a) = \frac{2}{5}$, $P(b) = \frac{3}{10}$ and $P(A \cap B) = \frac{1}{5}$, then P(A'|B'). P(B'|A') is equal to

- (a) $\frac{5}{6}$ (b) $\frac{5}{7}$ (c) $\frac{25}{42}$
- (d) 1

Question 6.

If P(a) = 0.4, P(b) = 0.8 and P(B|A) = 0.6 then $P(A \cup B)$ is equal to

- (a) 0.24
- (b) 0.3
- (c) 0.48
- (d) 0.96

Question 7.

A and B are events such that P(a) = 0.4, P(b) = 0.3 and $P(A \cup B) = 0.5$. Then $P(B \cap A)$ equals

- (a) $\frac{2}{3}$ (b) $\frac{1}{2}$ (c) $\frac{3}{10}$ (d) $\frac{1}{5}$

Question 8.

You are given that A and B are two events such that $P(b) = \frac{3}{5}$, $P(A|B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$, then P(a) equals

- (a) $\frac{3}{10}$
- (b) $\frac{1}{5}$ (c) $\frac{1}{2}$ (d) $\frac{3}{5}$

If $P(b) = \frac{1}{5}$, $P(A|B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$ then $P(A \cup B)' + P(A' \cup B) = \frac{1}{5}$

- (a) $\frac{1}{5}$ (b) $\frac{4}{5}$ (c) $\frac{1}{2}$ (d) $\frac{3}{5}$

Question 10.

If A and B are two independent events with $P(a) = \frac{3}{5}$ and $P(b) = \frac{4}{9}$, then $P(A' \cap B')$ equals

- (a) $\frac{4}{15}$ (b) $\frac{8}{15}$
- (c) $\frac{1}{3}$ (d) $\frac{2}{9}$

Question 11.

Let A and B two event such that P(a) = $\frac{3}{8}$, P(b) = $\frac{5}{8}$ and P(AUB) = $\frac{3}{4}$. Then P(A|B).P(A'|B) is equal to

- $\begin{array}{c} \text{(a)} \ \frac{2}{5} \\ \text{(b)} \ \frac{3}{8} \\ \text{(c)} \ \frac{3}{20} \\ \text{(d)} \ \frac{6}{25} \end{array}$

Question 12.

If $P(a) = \frac{3}{8}$, $P(b) = \frac{5}{8}$, $P(A \cup B) = \frac{3}{4}$ then $p(\frac{B}{A})$ is

- $\begin{array}{c} \text{(a)} \ \frac{3}{47} \\ \text{(b)} \ \frac{5}{49} \\ \text{(c)} \ \frac{2}{3} \\ \text{(d)} \ \frac{1}{4} \end{array}$

Question 13.

Let P (a) = $\frac{7}{13}$, P(b) = $\frac{9}{13}$ and P (AUB) = $\frac{9}{13}$, Then P(A'|B) is equal to

- $\begin{array}{c} \text{(a)} \ \frac{6}{13} \\ \text{(b)} \ \frac{4}{13} \\ \text{(c)} \ \frac{4}{9} \\ \text{(d)} \ \frac{5}{9} \end{array}$

Question 14.

The probability that A speaks truth is $\frac{4}{5}$ while this probability for B is $\frac{3}{4}$. The probability that they contradict each others when asked to speak ana fact is

- $\begin{array}{c} \text{(a)} \ \frac{7}{20} \\ \text{(b)} \ \frac{1}{5} \\ \text{(c)} \ \frac{3}{20} \\ \text{(d)} \ \frac{4}{5} \end{array}$

Question 15.

A pair of dice are rolled. The probability of obtaining an even prime number on each dice is

- (a) $\frac{1}{36}$ (b) $\frac{1}{12}$ (c) $\frac{1}{6}$
- (d) 0

Prepared by:-

Mr. Sukumar Mandal (SkM)