

## **ST. LAWRENCE HIGH SCHOOL** A JESUIT CHRISTIAN MINORITY INSTITUTION **SOLUTION TO WORK SHEET: 40. Subject : PHYSICS**



## Date : 23.11.2020

## CLASS : XII

| CLAS                                                                                                 | S : XII Topic: Lenses, the lens formula related sums,<br>condition of casting real images of a fixed object on                                                                                     |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter: Refraction of light at Spherical surfacea fixed screen by a convex lens in different cases. |                                                                                                                                                                                                    |
| 1:                                                                                                   | What sort of lens will an air bubble in water behave like?                                                                                                                                         |
|                                                                                                      | (a) biconvex (b) concavo-convex (c) convexo-concave (d) biconcave                                                                                                                                  |
| Ans.                                                                                                 | d) biconcave                                                                                                                                                                                       |
| 2:                                                                                                   | Observe the behaviour of the light rays as shown in the picture.<br>The relation of $n_1$ and $n_2$ is $n_2  (n_1)  n_2$                                                                           |
|                                                                                                      | (a) $n_2 > n_1$ (b) $n_1 > n_2$ (c) $n_1 > n_2$ (d) $n_1 = n_2$                                                                                                                                    |
| Ans.                                                                                                 | (a) $n_2 > n_1$                                                                                                                                                                                    |
| 3:                                                                                                   | An object behaves like a convex lens in air and a concave lens in water. The refractive index of the material of the object is                                                                     |
|                                                                                                      | <ul><li>(a) less than air</li><li>(b) more than both water and air</li><li>(c) more than air but less than water</li><li>(d) almost equal to water</li></ul>                                       |
|                                                                                                      | Ans. (c) more than air but less than water                                                                                                                                                         |
| 4:                                                                                                   | The optical centre of a lens is a fixed point whose position is                                                                                                                                    |
|                                                                                                      | <ul><li>(a) within the lens</li><li>(b) outside the lens</li><li>(c) on the principal axis of the lens</li><li>(d) at the focus of the lens</li></ul>                                              |
|                                                                                                      | Ans. (c) on the principal axis of the lens                                                                                                                                                         |
| 5:                                                                                                   | A convex lens of focal length 20 cm is placed on a plane mirror A point object is placed at a distance of 20 cm above the lens along it axis. What will be the final image distance from the lens? |
|                                                                                                      | (a) 10 cm (b) infinity (c) 20 cm (d) 0                                                                                                                                                             |
|                                                                                                      | Ans. (c) 20 cm                                                                                                                                                                                     |
| 6:                                                                                                   | If an object is placed at the focus of a concave lens, the image will be formed                                                                                                                    |
|                                                                                                      | <ul><li>(a) at infinity</li><li>(b) at the mid-point of the optical centre and the focus</li><li>(c) at the optical centre</li><li>(d) at the focus</li></ul>                                      |
|                                                                                                      | Ans. (b) at the mid-point of the optical centre and the focus                                                                                                                                      |
| 7:                                                                                                   | The focal length of a convex lens is $f$ . If an object be placed at a distance $u$ from the lens, the condition of formation of an inverted image of equal size as the object is                  |

(a) u = 2f (b) u > 2f (c) f < u < 2f (d) 0 < u < f

Ans. (a) u = 2f

- 9: A point object is placed at the centre of a glass sphere. If radius of the sphere is 6 cm and refractive index of the material is 1.5, then the distance of the virtual image from the surface of the sphere will be
  - (a) 2 cm (b) 4 cm (c) 6 cm (d) 12 cm
- Ans. (c) 6 cm
- 10: An object is placed at a distance of 20 cm from a convex lens of focal length 10 cm. The image distance is
  - (a) 20 cm (b) 6.67 cm (c) 10 cm (d) 30 cm
- Ans. (a) 20 cm
- 11: The size of the image of an object which is at infinity, as formed by a convex lens of focal length 30 cm is 2 cm. If a concave lens of focal length 20 cm is placed between the convex lens and the image at a distance at 26 cm from the convex lens, the real size of the image would be
  - (a) 1.25 cm (b) 2.5 cm (c) 1.05 cm (d) 2 cm

Ans. (b) 2.5 cm

- 12: A convex lens of focal length 30 cm produces 5 times magnified real image of an object. What is the object distance ?
  - (a) 36 cm (b) 25 cm (c) 30 cm (d) 150 cm
- Ans. (a) 36 cm
- 13: To determine the focal length of a thin convex lens, if red light is used instead of blue light the focal length of the lens
  - (a) increases (d) decreases (c) remains same (d) cannot be determined
- Ans. (a) increases
- 14: Two thin lenses of focal lengths  $f_1$  and  $f_2$  are kept is contact co axially. The power of the combination is given by

(a) 
$$\sqrt{\frac{f_1}{f_2}}$$
 (b)  $\sqrt{\frac{f_2}{f_1}}$  (c)  $\frac{f_1 + f_2}{2}$  (d)  $\frac{f_1 + f_2}{f_1 f_2}$   
(d)  $\frac{f_1 + f_2}{f_1 f_2}$ 

- 15: A thin glass (refractive index,  $\mu = 1.5$ ) lens has optical power of -5 D in air. Its optical power in a liquid medium with refractive index 1.6 will be
  - (a) 1D (b) -1D (c) 25 D (d) -25 D

Ans. (a) 1D

Ans.