

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORKSHEET-16(CLASS-11) TOPIC- STRUCTURE OF ATOM SUBTOPIC- QUANTUM NUMBER

SUBJECT – CHEMISTRY DURATION – 30 mins

F.M. - 15 DATE -02.07.20

1.1 How many orbitals can have the following set of quantum number(s):

$$n = 3$$
, $l = 1$, $m_1 = 0$
a) 3 b) 1 c) 4 d) 2

1.2 Electronic configuration of the outer shell of the element Gd with atomic number 64 is:

(a)
$$4f^4 5d^5 6s^1$$
 (b) $4f^3 5d^5 6s^2$ (c) $4f^5 5d^4 6s^1$ (d) $4f^7 5d^1 6s^2$

1.3 Maximum number of electrons in a subshell can be:

(a)
$$4l + 2$$
 (b) $4l - 2$ (c) $2n^2$ (d) $2l + 1$

1.4 The orientation of atomic orbitals depends on their:

- (a) Spin quantum number (b) magnetic quantum number (c) azimuthal quantum number
- (d) Principal quantum number

1.5 Number of unpaired electrons in N²⁺:

1.6 If the electronic structure of oxygen atom is written as 1s² 2s² 2p⁴ it would violate:

- (a) Hund's rule (b) Pauli's exclusion principle (c) Both Hund's and Pauli's principles
- (d) None of these

1.7 Which quantum number(s) do 2s and 2p orbitals have in common?

1.8 For a principal quantum number n, how many atomic orbitals are possible?

1.9 Which set of quantum numbers uniquely defines one of the electrons in an atomic orbital with n = 2 and l = 0?

(a)
$$n=2, l=0, m_l=1, m_s=\pm 10, m_l=0, m_s=\pm 100, m_l=0, m_s=\pm 100, m_s=\pm 10$$

c)
$$n = 2$$
, $l = 0$, $m_l = 1$, $m_s = +1$ d) $n = 2$, $l = 0$, $m_l = 0$, $m_s = +1$

1.10 Element Z has the ground state electronic configuration 1s²2s²2p³. In which group does it belong?

(a) 5 (b) 15 (c) 3 (d) 13

1.11 A set of orbitals for which the quantum number I = 2 is:

- (a) 7-fold degenerate b) non-degenerate c) 3-fold degenerate d) 5-fold degenerate
- 1.12 For the principal quantum number n = 4, it is possible to have:
- (a) only s and p orbitals b) only s, p, d and f orbitals c) only an s orbital d) only s, p and d orbitals
- 1.13 "No two electrons in atom can have the same set of all four quantum numbers"-
- (a) Pauli's exclusion principle b) Hund's rule of maximum spin multiplicity
- c) The Aufbau Principle d) None of these
- 1.14 The electronic configuration of Cr is:
- a) $[Ar]4s^23d^4$ b) $[Ar]4s^13d^4$ c) $[Ar]3d^6$ d) $[Ar]4s^13d^5$
- 1.15 Find the number of unpaired electrons present in Fe²⁺:

(a) 6 b) 4 c) 5 d) 3

PREPARED BY: MR. ARNAB PAUL CHOWDHURY