

SOLUTION OF WORKSHEET-30

SUBJECT - STATISTICS

Term : FINAL

Topic - PROBABILITY DISTRIBUTION

Full Marks: 15

Date:18.01.2021

Class: XII

(i)	Values of the random variable are alwaysa) Positive real numbersc) both		b) negative real numbers d) none of these		
(ii)	For a negative random a) Positive	n variable X, Var(X) r b) Negative	nust be c) 0	d) none of these	
(iii)	Binomila distribution a) $p < \frac{1}{2}$	t is symmetric when b) $p > \frac{1}{2}$	c) $p = \frac{1}{2}$	d) none of these	
(iv)	Binomial distribution a) small	tends to Poisson distr b) large	ibution when p c) 0.5	d) none of these	
(v)	A Poisson distributio a) 5	n has double modes at b) 6	X=5 and X=6, c) 5.5	then parameter is d) none of these	
(vi)	$X \sim Poisson(1)$, the a) 1	β_1 is equal to b) 2	c) 4	d) none of these	
(vii)	$X \sim Poisson(1), P(1)$ a) $\frac{2}{e}$	$d \le X \le 2$) is b) $\frac{2}{3e}$	c) $\frac{3}{2e}$	d) none of these	
(viii)	If for a random varial a) 0	ble X ~ <i>Poisson</i> (1), F b) 1	$E(X-E(X))^3$ is c) 4	equal to d) none of these	
(ix)	If a random variable X defines waiting time in a bus stand, then X follows				
	a) binomial	b) Poisson	c) Uniform	d) none of these	

(x)	If $X \sim Poisson(2)$, then P(X=3) is					
	a) $2e^{-2}$	b) $\frac{4}{3}e^2$	c) 2 <i>e</i> ⁻¹	d) none of these		
(xi)	If $X \sim Poisson(1)$, then P(X=0) is					
	a) $2e^{-2}$	b) 2 <i>e</i> ²	c) <i>e</i> ⁻¹	d) none of these		
(xii)	Standard deviation of a Poisson distribution is 2. Then the value of β_2 is					
	a) 0.25	b) 0.75	c) 0.57	d) none of these		
(xiii)	The third order central moment of Bin $(n, \frac{1}{2})$ is					
	a) 0	b) n	c) np	d) none of these		
xiv)	The variance of a standard random variable is					
	a) 0	b)1	c) 2	d)none of these		
xv)	The mean of a standard random variable is					
	a) 0	b)1	c) 2	d)none of these		

Prepared by
Sanjay Bhattacharya