

SOLUTIONS OF WORKSHEET-30 SUBJECT – MATHEMATICS

<u>Final - Term</u>	
Chapter: Calculus	Class: XII
Topic: Miscellaneous	Date: 21.01.2021
<u>Choose the correct option</u>	<u>(1 x 15=15)</u>
1. $\int_0^\pi \sin 3x \sin 5x dx = ?$	
a) $\frac{\pi}{4}$ b) O	c) 1 d) None of these
2. $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx = ?$	
a) $\frac{\pi}{2}$, b) $\frac{\pi}{4}$, c) $\frac{\pi}{8}$, d) None of these.
3. $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5 - x}} dx = ?$	
a) $\frac{3}{8}$, b) $\frac{1}{8}$, c) $\frac{1}{2}$, a) None of these.

- 4. $\frac{d^3y}{dx^3} + y = \sqrt[3]{1 + \frac{dy}{dx}}$ is a differential equation of degree a. 1 b. 2 c. 3 d. 4
- 5. The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + \frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^4 + \frac{dy}{dx} + y = 6x^3 \text{ is } -$ a. 4 b. 3 c. 2 d. 1
- 6. In the linear differential equation of the form $\frac{dx}{dy} + Px = Q$, Q is
 - a. A constant.
 - **b.** Function of x.
 - c. A constant or a function of y.
 - d. Function of both x & y.
- 7. The integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$, is
 - a. e^x b. e^{Px}
 - c. $e^{\int Pdx}$
 - d. $e^{\int Pdy}$
- 8. Which of the statement(s) is/are true?
 - i. $f(x) = x^3$ is decreasing in $(-\infty, \infty)$
 - ii. $f(x) = x^4$ is increasing in $(-\infty, 0)$
 - a) Only i. is true.
 - b) Only ii. is true.
 - c) Both i. and ii. are true.
 - d) Both are false.

- 9. If the slopes of the tangent and normal to the curve y = f(x) at (x,y) be dy/dx and m respectively, then m = ?
 a) dy/dx
 b) dx/dy
 c) dx/dy
 d) None of these.
- 10. If the tangent to the continuous curve y = f(x)at P(a, b) is parallel to x-axis, then the equation of the tangent at P is
 - a) y = bb) y = ac) y = -bd) y = -a
- 11. The slope of the tangent to the rectangular hyperbola $xy = c^2$ at $(ct, \frac{c}{t})$ is
 - a) $-\frac{1}{t}$ b) $-\frac{1}{t^2}$ c) $\frac{1}{t}$ d) $\frac{1}{t^2}$
- 12. The minimum value of the function $f(x) = x^2 x + 2$ is ? a) 4 ; b) 1 ; c) 7 ; d) None of these.

13. The area bounded by the straight lines 2x = 3y, x = 3, x = 5 and

x-axis (in square unit) is -

- a) 16
- **b)** 8
- c) 4
- d) $\frac{16}{3}$
- 14. In an LPP , the decision variables can take ?
 - a) Any real values
 - b) Any integer values
 - c) Any natural numbers
 - d) Any non-negative real values
- 15. An infeasible LPP has ?
 - a) A unique solution
 - b) No solution
 - c) Many solutions
 - d) None of these.

Prepared by :-

Mr. Sukumar Mandal (SkM)