

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

SOLUTION-15(CLASS-11)

TOPIC- REDOX EQUILIBRIA

SUBTOPIC- ION-ELECTRON METHOD AND OXIDATION METHOD

SUBJECT – CHEMISTRY DURATION – 30 mins F.M. - 15 DATE -01.07.20

1.1 Which of the following represents a redox reaction?

(a) NaOH + HCl \rightarrow NaCl + H₂O (b) BaCl₂ + H₂SO₄ \rightarrow BaSO₄ + 2HCl (c) CuSO₄ + 2H₂O \rightarrow Cu (OH)₂ + H₂SO₃ (d) Zn + 2HCl \rightarrow ZnCl₂ + H₂ Ans. d

1.2 Which reaction involves neither oxidation nor reduction?

(a) $CrO_4{}^{2-}\to Cr_2O_7{}^{2-}$ (b) $Cr\to CrCl_3$ (c) $Na\to Na^+$ (d) $2S_2O_3{}^{2-}\to S_4O_6{}^{2-}$ Ans. a

1.3 Zn gives H_2 gas with H_2SO_4 and HCl but not with HNO₃ because-

(a) Zn acts as an oxidising agent when it reacts with HNO_{3} -

(b) HNO_3 is weaker acid than H_2SO_4 and HCl

(c) In electrochemical series Zn is above hydrogen

(d) NO_3^- is reduced in preference to hydronium ion

Ans. d

1.4 A compound of Xe and F is found to have 53.5% of Xe. What is the oxidation number of Xe in this compound?

(a) -4 (b) 0 (c) +4 (d) -6

Ans. d

1.5 A solution contains Fe^{2+} , Fe^{3+} and I^- ions. This solution was treated with iodine oat 35°C. E° for Fe^{3+}/Fe^{2+} is 0.77V and E° for $I_2/2I^- = 0.536V$. The favorable redox reaction is-(a) I_2 will be reduced to I^- (b) there will be no redox reaction (c) I^- will be oxidised to I_2

(d) Fe^{2+} will be oxidised to Fe^{3+}

Ans. c

1.6 One mole of N₂H₄ loses 10 moles of electrons to form a new compound y. Assuming that all nitrogen appears in the new compound, what is the oxidation state of nitrogen in y. (a) -1 (b) -3 (c) +3 (d) +5

Ans. c

1.7 The equivalent mass of oxidising agent in the following reaction is:

 $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$

(a) 32 (b) 64 (c) 16 (d) 8

Ans. c

1.8 In the reaction:

 $3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^- + BrO_3^- + 6HCO_3^-$

a) Bromine is oxidised and carbonate is reduced

b) Bromine is reduced and water is oxidized

c) Bromine is neither reduced nor oxidized

d) Bromine is both reduced and oxidized

Ans. d

1.9 Which of the following cannot function as an oxidising agent?
(a) □ b) Si(s) c) NO₃-(aq) d) Cr₂O₇²⁻
Ans. a

1.10 The oxidation number of Pt in [Pt (C_2H_4) Cl_3]⁻ is:

(a) +1 (b) +2 (c) +3 (d) +4 **Ans. b**

1.11 $aCr_2O_3 + bNa_2O_2 + cH_2O \longrightarrow mNa_2CrO_4 + nNaOH$ (a) b=3, n=4 b) b=3 n= 2 c) b=1, n=2 d) b=3, n= 4 Ans.

1.12 The oxidation number of Cr in Cr_2O_3 is-(a) +6 b) +5 c) +2 d) +3 Ans. 1.13 Determine the equivalent weights of the following marked compounds by applying the oxidation number and electronic methods-

<u>MnO</u>₂ + 4H⁺ → Mn²⁺ + 2H₂O (a) 25 b) 37.2 c) 158 d) 27.5 Ans. d

1.14 Determine the equivalent weights of the following marked compounds by applying the oxidation number and electronic methods-

HNO₃ + H⁺ →NO + 2H₂O (a) 63 (b) 21 (c) 13 (d) 31 Ans. b

1.15 Determine the equivalent weights of the following marked compounds by applying the oxidation number and electronic methods-

<u>SO₂ + 2H₂O</u> \rightarrow H₂SO₄ (a) 32 b) 64 c) 25 d) 23 Ans. a

PREPARED BY: MR. ARNAB PAUL CHOWDHURY