

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

WORK SHEET 10

Subject : PHYSICS

CLASS : XII

Chapter : Electrostatics

Multiple Choice Question :

1. A sphrical capacitor consists of two concentric spherical shells in air, when the inner shell is earthed, then capacitance becomes -(b > a)

(a)
$$4\pi \in_0 .K. \frac{b^2}{b-a}$$
 (b) $4\pi \in_0 .\frac{b^2}{b-a}$ (c) $4\pi \in_0$ (d) 0

- 2. Outer sphere is given a charge q. Why is charge q divided into $q_1 \& q_2$?
 - (a) outside and inside of the larger sphere is earthed.
 - (b) as inner sphere is earthed
 - (c) outer sphere is not earthed
 - (d) none of these.
- 3. Potential difference between A & B is [from the fig.]
 - (a) $V_A V_B$ (b) $V_B + V_A$ (c) V_B
 - (d) Zero

Topic : Capacitance of a spherical capacitor when inner shell

is earthed, energy density, Van-de-Graaff generator.

- 4. If the medium between the two spheres be filled with a dielectric constant K, then its capacitance is
 - (a) $4\pi \in_0 .K.\left(\frac{b^2}{b-a}\right)$ (b) $\frac{4\pi \in_0}{K} \cdot \left(\frac{b^2}{b-a}\right)$ (c) $\frac{K}{4\pi \in_0} .ab$ (d) $4\pi \in_0 .K.(b-a)$

5. Dimension of energy density between two plates in an electric field :(a) $[M L T^{-2}]$ (b) $[M L^{-1} T^{-2}]$ (c) $[M^2 L^2 T^2]$ (d) $[M^1 L^2 T^3]$

6. Expression for energy density of a parallel plate capacitor in vacuum,

(a) $\frac{1}{2} \epsilon_0 E^2$ (b) $2 \epsilon_0 E^2$ (c) $\epsilon_0 E^2$ (d) $\frac{1}{2} \epsilon_0 E$

- 7. Energy density is directly proportional to
 - (a) ϵ_0 (b) V (c) E^2 (d) E
- 8. The energy density in the electric field created by a point charge falls off with distance from the point charge as

(a)
$$\frac{1}{r}$$
 (b) $\frac{1}{r^2}$ (c) $\frac{1}{r^3}$ (d) $\frac{1}{r^4}$

 $1 \times 15 = 15$

Date : 16.5.20

9. A charge q_1 is placed at the centre of a spherical conducting shell of radium *R*. Conducting shell has a total charge q_2 . Electrostatic potential energy of the system is

(a)
$$\frac{q_1^2 + 2q_1q_2}{8\pi\epsilon_0 R}$$
 (b) $\frac{q_2^2 + 2q_1q_2}{8\pi\epsilon_0 R}$ (c) $\frac{q_1^2 + q_1q_2}{4\pi\epsilon_0 R}$ (d) $\frac{q_2^2 + q_1q_2}{4\pi\epsilon_0 R}$

10. Let u_a and u_d represent the energy density in air and in a dielectric, respectively, for the same field in both. Let K = dielectric constant. Then,

(a) $u_a = u_d$ (b) $u_a = K u_d$ (c) $u_d = K u_a$ (d) $u_a = (K-1)u_d$

- 11. A parallel plate capacitor is connected to a battery. The plates are pulled apart with a uniform speed. If x is the separation between the plates, then the rate of charge of electrostatic energy of the capacitor is proportional to
 - (a) x (b) x^2 (c) $\frac{1}{x}$ (d) $\frac{1}{x^2}$
- 12. A small sphere of radius r_1 having charge q_1 is enclosed by a spherical shell of radius r_2 having charge q_2 . Which charge will necessarily flow from the sphere to the shell, when connected
 - (a) q_1 (b) q_2 (c) Both (a) and (b) (d) May be q_2
- 13. Van de Graaff generator is used to
 - (a) store electrical energy
 - (b) build up high voltages of few million volts
 - (c) decelerate charged particle like electrons
 - (d) Both (a) and (b) are correct
- 14. Which of the following statement(s) is/are true about the principle of Van de Graaff generator?
 - (a) The action of sharp points
 - (b) The charge given given to a hollow conductor is transferred to outer surface and is distributed uniformly over it
 - (c) It is used for accelerating uncharged particle
 - (d) Both (a) and (b) are true
- 15. In a Van de Graaff type generator, a spherical metal shell is to be at a $1.5 \times 10^6 V$. The dielectric strength of the gas surrounding the electrode is $5 \times 10^7 Vm^{-1}$. What is minimum radius of the spherical shell required?
 - (a) 0.3 cm (b) 0.03 cm (c) 30 cm (d) 3 m

Ambarnath Banerjee