

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORKSHEET-5

SUBJECT - STATISTICS

Term: 1st

Topic - INTERPOLATION	
------------------------------	--

Full Marks: 15 Date:20.06.2020

Q1.	Select the	correct	alternative	of the	follov	ving	questions.
-----	------------	---------	-------------	--------	--------	------	------------

- f(2) = 9, f(4) = 63, f(6) = 211, f(8) = 506, then $\Delta^3 f(2) =$ (i)
 - (a) 53
- (b) 55
- c) 57
- (d) none of these

Class: XI

- $u_0 = 3, u_1 = 12, u_2 = 81, u_3 = 200, u_4 = 100, u_5 = 8, then u_0^5 =$ (ii)
 - (a)750
- (b) 755
- (c) 760
- (d) none of these
- (iii) Arguments are variables
 - (a) independent (b) dependent (c) only linear (d) none of these
- (iv) Entries are variables
 - (a)independent (b) dependent (c) only linear
- (d) none of these
- h denotes the difference which is (v)
 - (a)forward
- (b) backward (c) stationary (d) none of these
- The arguments are in order (vi)
 - (a) Random
- (b) increasing (c) decreasing (d) none of these
- If the arguments are first n odd natural numbers, then $x_2 + 3h =$
- (a) 5

(vii)

- (b) 7
- (c)9
- (d) none of these

(viii)	If the arguments are fi (a) 5 (b) 7	rst n odd natural n (c) 9	umbers, then $x_1 + 3h =$ (d) none of these			
(ix)	If the arguments are $x_2 + 3h =$	first n even nat	ural numbers(starting from	2), then		
	(a) 6 (b) 8	(c) 10	(d) none of these			
(x)	If the arguments are $x_2 + h =$	first n even natu	ral numbers (starting from	2), then		
	(a) 6 (b) 8	(c) 10	(d) none of these			
(xi)	The values of x and y (a) related (b) not		ndent(d) none of these			
(xii)	In interpolation there (a) can (b) can		mp in the movement of variances (d) none of these	ıble		
(xiii)	If the arguments has the (a) 6 (b) 9	ne equal difference (c) 10	as 3 and $x_1 = 4$, then $x_3 =$ (d) none of these			
(xiv)	If the arguments has the (a) 6 (b) 9	ne equal difference (c) 10	as 3 and $x_1 = 4$, then $x_4 =$ (d) none of these			
(xv)	If the arguments has the (a) 6 (b) 9	ne equal difference (c) 10	as 3 and $x_1 = 4$, then $x_3 =$ (d) none of these			
(x)	The less than type cumulative frequencies correspond to the					
	(a) lower class bounda	ries (b)	(b) upper class boundaries			
	(c)) upper class limits	(d)	none of these			
(xi)	The more than type cumulative frequencies correspond to the					
	(a) lower class bounda	aries (b)	upper class boundaries			
	(c)) upper class limits	(d)	(d) none of these			
(xii)	Total frequency is equ (a) 1 st class (b) last		type cumulative frequency of class (d) none of these			

(X111)	Total frequency is equal to the greater than type cumulative frequency of the (a) 1 st class (b) last class (c) middle class (d) none of these					
	(a) 1 Class	(b) last class	(c) illiddle class	(d) Holle of these		
(xiv)	The width of a class is given by the difference of the class					
	(a)Limits	(b) boundaries	s (c) intervals	(d) none of these		
(xv)	In a frequency	distribution ta	ble class widths are			
	1 .	(b) not equal		(d) none of these		

Prepared by Sanjay Bhattacharya