

A uniform rod of area of cross section A, length L and density d is suspended vertically. The stress at the middle point of the rod is

a. $\frac{1}{2}$ dgL b. $\frac{1}{4}$ dgL c. dgL d. None of these

8. The bulk modulus of water is $2 \times 10^9 N/m^2$. The pressure required to increase the density of water by 0.1% is a. $2 \times 10^3 N/m^2$. b. $2 \times 10^6 N/m^2$. C. $2 \times 10^5 N/m^2$. d. $2 \times 10^7 N/m^2$.

9. A mass m is suspended from a wire. Change in length is Δl . Now the same wire is stretched to double its length and the same mass is suspended from the wire. The change in length in this case will be

a. Δl b. $2\Delta l$ c. $4\Delta l$ d. $8\Delta l$

- 10. A uniform metal rod fixed at its ends of 2mm^2 cross-section is cooled from 40°C to 20°C . The coefficient of linear expansion of rod is 12×10^{-6} / $^{\circ}\text{C}$ and its Young's modulus is 10^{11}N/m^2 . The energy stored per unit volume of the rod is
 - a. $2880J/m^3$ b. $1500J/m^3$ c. $5760J/m^3$ d. $1410J/m^3$
- 11. A wire of length L and area of cross section A is made of a material of Young's modulus Y. It is stretched by an amount x. The work done is

a. $\frac{YAx}{2L}$ b. $\frac{Yx^2A}{L}$ c. $\frac{Yx^2A}{2L}$ d. $\frac{2Yx^2A}{L}$

12. Two wires A and B are made of the same material. Their lengths are in the ratio 1:2 and the diameters are in the ratio 2:1. If they are pulled by same force, their increase in lengths will be in the ratio

a. 2:1
b. 1:4
c. 1:8
d. 8:1

- 13. The length of a wire is increased by applying a force, while its volume remains unchanged. The Poisson's ratio of the material of the wire is
- a. $\frac{1}{4}$ b. $\frac{1}{2\sqrt{2}}$ c. $\frac{1}{2}$ d. $\frac{1}{\sqrt{2}}$
- 14. A wire can be broken by applying a force of 200N. The force required to break another wire of same length and same material, but double in diameter is
- a. 200N b. 400N c. 600N d. 800N
- 15. The Poisson's ratio of a material is 0.5. If a force is applied to a wire of this material, there is a decrease in cross-sectional area by 4%. The percentage increase in length in this case is
- a. 1% b. 2% c. 2.5% d. 4%

Name of the teacher - Soumitra Maity