

St. Lawrence High School

A Jesuit Christian Minority Institution

$Term - 1^{st}$ Work Sheet -3

Class – X Subject – Physical Science Date - 01.03.21

Chapter – Thermal Phenomena

Choose the correct option for the following questions.

 $1 \times 15 = 15$

- 1. The type of expansion a gas can have is
 - a. Superficial and volume expansion
 - c. only volume expansion

- b. linear and volume expansion
- d. none
- 2. For thermal expansion of gas, we generally ignore the expansion of gas container, because
 - a. γ of container is much greater than that of the gas contained
 - b. γ of gas contained is much greater than that of the container
 - c. γ of gas contained is equal to that of the container
 - d. Gas molecules do not exert any force on each other.
- 3. For all ideal gasses at constant pressure
 - 1. γ is different for different gas
 - 3. γ is same for all the gas

- 2. γ depends on the nature of gas container
- 4. γ is a fraction greater than one?.

4. For all ideal gasses at constant pressure -

a.
$$y = 273$$

b.
$$\nu = 0$$

c.
$$\gamma = -273$$

d.
$$\gamma = \frac{1}{273}$$

- 5. The SI unit of coefficient of volume expansion of gas is
 - a. /°C
- b. /K

c. °C

d. K

- 6. The C.G.S unit of coefficient of volume expansion of gas is
 - a. /°C
- b. /K

c. °C

d. K

- 7. The volume expansion coefficient of gas
 - a. Is $\frac{1}{273}$ for ideal gas at constant pressure.
 - b. could be more or less than $\frac{1}{273}$ if pressure is varied
 - c. may not be $\frac{1}{273}$ at constant pressure if the gas is not an ideal one.
 - d. All of the above.

- 8. Change of volume of gas depends on
 - a. Initial volume
 - b. Change of temperature
 - c. Pressure on the gas
 - d. All of the above
- 9. The volume expansion coefficient of ideal gas at constant pressure, depends on
 - a. Nature of gas
 - b. Change of temperature
 - c. Initial volume
 - d. None of the above
- 10. Two different ideal gasses of volume *v* and 2*v* are mixed at constant pressure. Volume expansion coefficient of the mixture
 - a. Will remain same to $\frac{1}{273}$
 - b. Will be $\frac{1}{91}$
 - c. Depends on the nature of the gasses
 - d. None of these
- 11. The relation α : β : $\gamma = 1$: 2: 3, is valid in case of
 - a. only Solid
 - b. only Liquid
 - c. only Gas
 - d. solid, liquid and gas all.
- 12. 1*cc* ideal gas is heated (keeping pressure constant), such that the temperature increases from 0°C to 1°C. The increase in volume will be
 - a. 1cc
 - b. 273 cc
 - c. $\frac{1}{273}$ *cc*
 - d. None of these
- 13. γ of any ideal gas at constant pressure is same, because
 - a. Ideally the gas molecules do not exert any force on each other
 - b. Gas molecules are mass less
 - c. Kinetic energy of gas molecules increase when temperature is increased
 - d. All of these

14. At constant pressure, certain amount of ideal gas is heated from 0°C. At what temperature the increase in volume
will be equal to the initial volume?
a. 273 K
b. 0 K
c. $\frac{1}{273}$ °C
d. 273 °C

- 15. 32g of O_2 gas is taken at STP and then heated to 273°C(keeping pressure constant). What will be the volume of the gas at that temperature?
 - a. 22.4 lit
 - b. $\frac{22.4}{273}$ lit
 - c. 44.8 lit
 - d. None of these

Name of the teacher – SoumitraMaity