

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

<u>STUDY MATERIAL-10</u> SUBJECT – STATISTICS

1st term

Chapter: DISPERSION

Class: XI

Topic: Range

Date: 10.08.2020

DISPERSION

Definition:

The degree of discrepancy or scatterness of a set of observations from its central value is known as dispersion.

So less be the dispersion better is the central value.

Measures of Dispersion:

> Absolute measures:

- 1. Range
- 2. Mean deviation
- 3. Mean square deviation

Relative measures:

- 1. Coefficient of mean deviation
- 2. Coefficient of quartile deviation
- 3. Coefficient of variation

<u>RANGE</u>

It is the diference of the minimum observation from the maximum observation. It is denoted by R.

For ungrouped grouped data

Observations: x_1 , x_2 , , x_n

 $R_x = x_{(n)} - x_{(1)}$

For grouped data

Observations: x_1 , x_2 , ..., x_n Frequency: f_1 , f_2 , ..., f_n $R_x = x_{(n)} - x_{(1)}$

Properties:

• Change of base or origin and scale

If $y_i = a + b x_i \forall i = 1(1)n$ Then, $R_y = |b| R_x$ **Proof:** Case1: b is positive, ie, b>0 $y_{(n)} = a + b. x_{(n)}$(*) $y_{(1)} = a + b. x_{(1)}$(**) Subtracting (**) from (*), we get $R_v = b.R_x$ Case2: b is negative, ie, b< 0 $y_{(n)} = a + b. x_{(1)}$(*) $y_{(1)} = a + b. x_{(n)}$(**) Subtracting (**) from (*), we get

$$R_y = -b.R_x$$

Combining case 1 and case 2, we get

 $R_y = |b| R_x.$

• If all the observations are equal to a constant, the range becomes equal to zero.

If $x_i = k(constant) \forall i = 1(1)n$,

Then $R_x = 0$

Proof:

 $R_x = x_{(n)} - x_{(1)}$ = k - k = 0

Prepared by

Sanjay Bhattacharya