

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION SOLUTION TO WORK SHEET: 51 Subject : PHYSICS

CLASS : XII

Ch	apter- Digital circuits		Topic: Binary and decimal no NOT, NAND, NOR -	
1.	A binary number 1000	Multiple choic	e questions :	1 X 15 = 15
	(a) 8	(b) 16	(c) 32	(d) 64
	Ans. (a) 8			
2.	In the binary number sy	vstem 100 + 1011 is equ	ual to	
	(a) 1000	(b) 1011	(c) 1110	(d) 1111
	Ans. (d) 1111			
3.	If $A = 1$, $B = 0$, then in t	erms of Boolean algeb	ra, $A + \overline{B}$ is equal to	
	(a) A	(b) B	$(c)\overline{A}$	(d) $\overline{A+B}$
	Ans. (a) A			
4.	The following truth tab	le corresponds to the lo	ogic gate	
	А	B X		
	0	0 0		
	0	1 1		
	1	0 1		
	1	1 1		
	(a) NAND	(b) OR	(c) AND	(d) XOR
	Ans. (b) OR			
5.	The combinations of NAND (a) an OR gate and an ANI (b) an AND gate and NOT (c) an AND gate and an OR (d) an OR gate and a NOT g) gate respectively gate respectively gate respectively	equivalent to $A \bullet \downarrow \Box \Box \bullet \bullet$	
	Ans. (a) an OR gate and an A	AND gate respectively		
6.	For the given combination of states of inputs A, B, C are a then the logic states of output (s) 0,0 (b) 0,1	as follows $A=B=C=0$ and D are	B = 1. C = 0, (d) 1,1 $A = B = 1. C = 0,$ $A = B = 1. C = 0,$	
	Ans. (d) 1,1			i
7.	Which of the following log: (a) OR	ic gates is a universal gate ? (b) NOT (c) A		

Ans. (d) NAND

8.	The output of OR gate is	5 1				
	(a) if both inputs are zero	o (b) if either or b	ooth inputs are 1			
	(c) only if both inputs a	re 1 (d) if either inp	(d) if either input is zero. G_1			
	Ans. (b) if either or both inputs are 1		C •	\square G_2 D D		
9.	9. Two NOT gates are connected at the two inputs of a NAND gate. This combination					
	(a) NAND gate	(b) AND gate	(c) OR gate	(d) NOR gate		
	C) C					
	Ans. (c) OR gate					
10.	Two inputs of NAND gates are shorted. This gate is equivalent to					
	(a) OR gate	(b) AND gate	(c) NOT gate	(d) XOR gate		
	Ans. (c)NOT gate					
11.	1. A logic gate is an electronic circuit which					
	(a) makes logic decisions(c) works on binary algebra		(b) allows electrons flow only in one direction			
			(d) alternates between 0 and 1 values			
	Ans. (a) makes logic decisions					
10						
12.	How many NAND gates	•		(1) (
	(a) 1	(b) 2	(c) 3	(d) 4		
	Ans. (b) 2					
	Alls. (0) 2					
13	NAND gate is					
10.	•	(b) not a universal gate	(c) a basic universal gate	(d) a universal gate		
	(u) u ouble gate	(c) not a ann eitear gate	(e) a caste ant ersar gave	(a) a ann orbar gate		
Ans. (d) a universal gate						
14.	The diagram performs	the logic function of				
	(a) OR gate	(b) NOT gate	(c) AND gate	(d) NAND gate		
	Ans. (c) AND gate		V'			
)) • Y		
15.	The fundamental Logic gates ase					
	(a) OR and AND	(b) NOT and OR	(c) NAND and NOR	(d) NAND and NOT.		
	Ans. (c) NAND and NOR					

Ambarnath Banerjee