

Class: XII

ST. LAWRENCE HIGH SCHOOL

Date: 5.5.20

A JESUIT CHRISTIAN MINORITY INSTITUTION

WORK SHEET 3

Subject: PHYSICS

Chapter : Electro	ostatics Topic:Flux	Topic:Flux,Gauss's Theorem,E for thin spherical shell,graph.		
Multiple Choice Que	stions:		1X15=15	
1. The electric flux the surface is	linked with a surface become	es maximum if the angle betw	veen the field lines and normal to	
a) 0°	b) 45°	c) 90°	d) 180°	
2. A circular plate of circular plate is	fradius r is placed parallel to a	a uniform electric field of into	ensity E . The flux linked with the	
a) zero	b) Ε x πr²	c) E x 2πr	d)E x 4πr²	
3. If the inward and surface is	outward electric flux through	a closed surface be ϕ_1 and	φ2,the charge inside the closed	
a) $(\varphi_1 - \varphi_2) \in_0$	b) $(\phi_2 - \phi_1) \in_0$	c) $(\phi_1 + \phi_2)/\epsilon_0$	d) $(\phi_2 - \phi_1)/\epsilon_0$	
4. A charge placed a doubled, the force w	at a distance from an electric	dipole on its axis experiences	s a force F. If the distance be	
a) 2F	b) F/2	c) F/4	d) F/8	
5. What is the unit o	f electric flux?			
a) v/m	b) v m	c) v m²	d) v/m²	
6. Mathematical for	m of Gauss's theorem is			
a) $\phi = q/\epsilon_0$	b) $\varphi = q \epsilon_0$	c) φ = E S	d) φ = E /S	
7. The variation of e radius R is	electric field intensity with dist	tance r from the centre of a t	hin charged spherical shell of	
(i) E =0 (r < R) ;	(ii) $E = 1/4\pi\epsilon_0 . q/R^2 (r = R)$); (iii) $E = 1/4\pi\epsilon_0 .q/r^2 (r > 1)$	R)	
a) only (i) is correct	b) Only (ii) is correct c) o	only (iii) is correct d) all are	correct	
8. Electric field inten sphere is given by	sity (E) due to a thin spherica	I shell of charge at a distance	r (r>R) from the centre of the	

a) E= $(1 / 4\pi\epsilon_0.q/r^2$	b) $4\pi\epsilon_0$ (q/r ²)	c) 4π ∈ ₀	d) $qr^2/4\pi\epsilon_0$		
9. Intensity at any point within solid spherical charged conductor is					
a) zero	b) 4πR²	c) $1/4\pi R^2$	d)1/4πR		
10. A spherical shell of radius 20 cm has $20\mu C$ charge placed in vacuum. Calculate the electric intensity at a distance of 15 cm					
a) 0	b)1	c) 2	d)3		
11. An electric field is expressed as $\mathbf{E} = (5\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$ unit. Find out the electric flux across an area 200 unit on the yz – plane in that field.					
a) 10 unit	b) 100 unit	c) 1000 unit	d) 1 unit		
12. Gauss's theorem is valid for					
a) stationary charge	b) moving charge	c) both static and moving charge d) none of these			
13. A hemisphere of radius r is placed in a uniform electric field intensity E. How much electric flux passes Through it?					
a) 2πrE	b) 4πr²E	c) 2πr²E	d) πr²E		
14. S_1 and S_2 are two parallel concentric spheres ($R_2 > R_1$) enclosing charges Q and 2Q respectively. What is the ratio of the electric flux through S_1 and S_2 ?					
a) 1/3	b) 3/1	c) 2/3	d) 3/2		
15. A sphere of radius 10 cm has an unknown charge .If the electric field 20 cm from the centre of the sphere is 2 x 10^4 NC ⁻¹ and points radially inward. What is the net charge on the sphere?					
a) q = 88.9 nC	b) q = - 88.9 nC	c) q = 0 nC	d) q = 90 nC		
			Ambarnath Banerjee		