ST. LAWRENCE HIGH SCHOOL

A Jesuit Christian minority Institution

Subject: Mathematics
Class- X
Date:16/05/2020
Worksheet-29

Chapter- Heights and Distance

Topic- Application of Heights And Distance

1. Choose the correct alternative.

1x15=15
a) An observer 2 m tall is $10 \sqrt{3} \mathrm{~m}$ away from a tower. The angle of elevation from his eye to the top of the tower is 30°. Find height of the tower.
i) 14 m
ii) 12 m iii) 10 m
iv) none of these
b) From a point P on the ground level, the angle of elevation of the top of a tower is 30°. The tower is 200 m high, the distance of point P from the foot of the tower is
i) $\quad 346 \mathrm{~m}$
ii) 400 m
iii) 298 m
iv) 312 m
c) The angle of elevation of a ladder leaning against a wall is 60° and the foot of the ladder is 12.4 m away from the wall. The length of the ladder is.
i)
14.8 m
ii) 6.2 m
iii) 12.4 m
iv) 24.8 m
d)The top of a 15 m high tower makes an angle of elevation of 60° with the bottom of an electronic pole and angle of elevation of 30° with the top of the pole. What is the height of the electric pole?
i) 12 m
ii) 5 m
iii) 8 m
iv) 10 m
e) On the same side of a tower, two objects are located. Observed from the top of the tower, their angles of depression are 45° and 60°. If the height of the tower is 600 m , find the distance between the objects. $(\sqrt{3}=1.732)$
i) 272 m
ii) 254 m
iii) 288 m
iv) 284 m
f) A ladder 10 m long just reaches the top of a wall and makes an angle of 60° with the wall. Find the distance of the foot of the ladder from the wall. $(\sqrt{3}=1.732)$
i) 5 m
ii) 17.3 m
iii) 8.65 m
iv) 4.32 m
g) From a tower of 80 m high, the angle of depression of a bus is 30°. How far is the bus from tower?
i) 138.4 m
ii) 40 m
iii) 160 m
iv) 46.24 m
h) The angle of elevation of the top of a lighthouse 60 m high, from two points on the ground on its opposite sides are 45° and 60°. What is the distance between two points?
i) 30 m
ii) 94.6 m
iii) 45 m iv) none of these
i) From the top of a hill 100 m high, the angles of depression of the top and bottom of a pole are 30° and 60° respectively. What is the height of the pole?
i) 52 m
ii) 66.67 m
iii) 50 m
iv) 33.33 m
j) To a man standing outside his house, the angles of elevation of the top and bottom of a window are 60° and 45° respectively. If the height of the man is 180 cm and he is 5 m away from the wall, what is the length of the window?
i) 3.65 m
ii) 2.5 m
iii) 8.65 m
iV) 2 m
k)Find the angle of elevation of the sun when the shadow of a pole of 18 m height is $6 \sqrt{3} \mathrm{~m}$ long.
i)
30°
ii) 60°
iii) 45°
iv) none of these
l) An observer 1.6 m tall is $20 \sqrt{3} \mathrm{~m}$ away from a tower. The angle of elevation from his eye to the top of the tower is 30°. The height of the tower is
i) 21.6 m
ii) 23.2 m
iii) 24.72 m
iv) none of these
m)The distance between two pillars of length 16 m and 9 m is x metres. If two angles of elevation of their respective top from the bottom of the other are complementary angles. Find the value of x
i) $15 \mathrm{~m} \quad$ ii) $16 \mathrm{~m} \quad$ iii) 12 m iv) none of these
n) The angle of elevation of the top of a tower from a point A on the ground is 30°. On moving a distance of 20 m towards the foot of the tower to a point B , angle of elevation increases to 60°. The angle of the tower is
i) $\sqrt{3} \mathrm{~m}$
ii) $5 \sqrt{3} \mathrm{~m}$
iii) $10 \sqrt{3} \mathrm{~m}$
iv) none of these
o) Two poles of equal height are standing opposite to each other on either side of a 100 m wide road. From a point between them on road, angle of elevation of their tops are 30° and 60° respectively. The height of each pole is
$\begin{array}{lll}\text { i) } 20 \mathrm{~m} & \text { ii) } 25 \mathrm{~m} & \text { iii) } 25 \sqrt{3} \mathrm{~m} \text { iv) none of these }\end{array}$
Aparajita Mondal

